Public Announcement Logic with Distributed Knowledge: Expressivity, Completeness and Complexity Corrections and improvements

December 7, 2017

- **Page 146.** The definition of *trans-bisimulation* can be simplified by merging the clauses (zig_a) and (zig_A) together to be for an arbitrary group of agents (the case for an agent can be treated as for a singleton group). To apply this change, some later proofs need to be updated accordingly.
- Page 149. In the last paragraph of the proof of Lemma 28, Replace:
 "Otherwise, if τ is some D_A, it follows by definition that m ∼_a n for all a ∈ A. Hence mQ_an for all a ∈ A, and thus mQ_{D_A}n."

with

"Otherwise, if τ is some D_A with $m \sim_{D_A} n$, it follows by the definition of folding that $mQ_a n$ for all $a \in A$, and thus $mQ_{D_A}n$."

Page 161. In the proof of Theorem 38, Replace:
"Otherwise, if τ is some D_A, it follows by definition that mR_an, and also mQ_an, for all a ∈ A; and thus mQ_{D_A}n."

with

"Otherwise, if τ is some D_A with $\overline{m}R_{D_A}\overline{n}$, it follows by definition of Q^{AG} that $mQ_a n$ for all $a \in A$; and thus $mQ_{D_A}n$."