Public Announcement Logic with Distributed Knowledge: Expressivity, Completeness and Complexity Corrections and improvements

December 7, 2017

- Page 146. The definition of trans-bisimulation can be simplified by merging the clauses $\left(\mathrm{zig}_{a}\right)$ and $\left(\mathrm{zig}_{A}\right)$ together to be for an arbitrary group of agents (the case for an agent can be treated as for a singleton group). To apply this change, some later proofs need to be updated accordingly.
- Page 149. In the last paragraph of the proof of Lemma 28, Replace:
"Otherwise, if τ is some D_{A}, it follows by definition that $m \sim_{a} n$ for all $a \in A$. Hence $m Q_{a} n$ for all $a \in A$, and thus $m Q_{D_{A}} n$."
with
"Otherwise, if τ is some D_{A} with $m \sim_{D_{A}} n$, it follows by the definition of folding that $m Q_{a} n$ for all $a \in A$, and thus $m Q_{D_{A}} n$."
- Page 161. In the proof of Theorem 38, Replace:
"Otherwise, if τ is some D_{A}, it follows by definition that $\bar{m} R_{a} \bar{n}$, and also $\mathrm{m} Q_{a} \mathrm{n}$, for all $a \in A$; and thus $\mathrm{m} Q_{D_{A}} \mathrm{n}$."
with
"Otherwise, if τ is some D_{A} with $\bar{m} R_{D_{A}} \bar{n}$, it follows by definition of Q^{AG} that $\mathrm{m} Q_{a} \mathrm{n}$ for all $a \in A$; and thus $\mathrm{m} Q_{D_{A}} \mathrm{n}$."

