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Question

Theorem (S. Simpson)

Let X be an analytic set, Y a metric space, and f : X → Y a
Borel function. Then f(X) is separable.

Question: If X is only a separable metric
space, is f(X) separable?

We prove that this problem is independent of ZFC.
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Borel sets

Let X be a metric space.

Definition

B(X): Borel sets of X is the σ-algebra generated by the open sets
of X.
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Borel hierarchy

Σ0
1 = open, Π0

1 = closed;

For 1 < α < ω1,

Σ0
α = {

⋃
n∈ω

An : An ∈ Π0
αn
, αn < α};

Π0
α = {X \A : A ∈ Σ0

α(X)}

∆0
α = Σ0

α ∩Π0
α.

B(X) =
⋃

1≤α<ω1

Σ0
α(X) =

⋃
1≤α<ω1

Π0
α(X).
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Borel functions

Let X and Y be metric spaces, and let f : X → Y be a
function.

Definition

Borel function: f−1(U) is Borel set in X for any U open in Y .
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Polish spaces

Definition

Polish space: a separable, completely metrizable topological space.

Example

1 Rn,Cn and I = [0, 1];

2 countable discrete spaces;
3 products of countable many Polish spaces:

(a) Hilbert cube Iω,
(b) Cantor space C = {0, 1}ω,
(c) Baire space N = ωω.
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Analytic sets

Definition

Let X be a Polish space. A subset A ⊆ X is analytic (or Σ1
1) if

there is a closed subset C ⊆ X ×N such that

x ∈ A ⇐⇒ ∃y ∈ N ((x, y) ∈ C).

A subset B ⊆ X is co-analytic (or Π1
1) if X \B is analytic.

Theorem (Suslin)

Let X be a Polish space and A ⊆ X. Then A is Borel iff both A
and X \A are analytic.
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Projective sets

Let X be a Polish space. We have already defined the Σ1
1

(analytic), Π1
1 (co-analytic) sets.

Σ1
n+1 = {projX(A) : X Polish, A ⊆ X ×N , A ∈ Π1

n(X ×N )}

Π1
n+1 = {X \A : X Polish, A ∈ Σ1

n+1(X)}

∆1
n = Σ1

n ∩Π1
n

P(X) =
⋃
n∈ω

Σ1
n(X) =

⋃
n∈ω

Π1
n(X)
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Determinacy

With each subset A of ωω we associate the following game
GA, played by two players I and II. First I chooses a natural
number a0, then II chooses a natural number b0, then I chooses
a1, then II chooses b1, and so on. The game ends after ω steps; if
the resulting sequence 〈a0, b0, a1, b1, ...〉 is in A, then I wins,
otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move
to make depending on the previous moves of both players. A
strategy is a winning strategy if the player who follows it always
wins. The game GA is determined if one of the players has a
winning strategy.
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Determinacy

Theorem (Martin, 1975)

All Borel games are determined.

Definition

Projective Determinacy (PD): the game GA is determined for
every projective set A.

Theorem (Martin)

If Determinacy (Π1
n) then every uncountable Σ1

n+1 subset of
{0, 1}ω has a perfect subset.
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Martin’s Axiom (MA)

Let 〈P,≤〉 be a partial order. A chain in P is a set C ⊆ P
such that ∀p, q ∈ C(p ≤ q ∨ q ≤ p). p and q are compatible iff

∃r ∈ P(r ≤ p ∧ r ≤ q);

they are incompatible (p ⊥ q) iff ¬∃r ∈ P(r ≤ p ∧ r ≤ q). An
antichain in P is a subset A ⊆ P such that
∀p, q ∈ A(p 6= q → p ⊥ q).

Definition

A partial order 〈P,≤〉 has the countable chain condition (c.c.c.) iff
every antichain in P is countable.
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Martin’s Axiom (MA)

Definition

Let 〈P,≤〉 be a partial order. D ⊆ P is dense in P iff
∀p ∈ P∃q ≤ p(q ∈ D). G ⊆ P is a filter in P iff

(a) ∀p, q ∈ G∃r ∈ G(r ≤ p ∧ r ≤ q), and

(b) ∀p ∈ P∀q ∈ G(q ≤ p→ p ∈ G).

MA(κ) is the statement: Whenever 〈P,≤〉 is a non-empty
c.c.c. partial order, and D is a family of ≤ κ dense subsets of P,
then there is a filter G in P such that ∀D ∈ D(G

⋂
D 6= ∅). MA

is the statement ∀κ < 2ω (MA(κ)).
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Recall the question

Let X and Y be metric spaces with X
separable, and let f : X → Y be a Borel function.
Is then f(X) separable?
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Theorems

We prove that this problem is independent of ZFC due to the
following theorems:

Theorem (2ω1 > 2ω)

Let X and Y be metric spaces with X separable, and let
f : X → Y be a Borel function. Then f(X) is separable.

Theorem (MA(ω1))

There exist metric spaces X and Y with X separable, and a Borel
function f : X → Y such that f(X) is not separable.
Furthermore, here f can be of Baire class 1.
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Theorems

Theorem (MA + ¬CH + ω1 = ωL1 )

There exist metric spaces X and Y with X a co-analytic subset of
R, and a Borel function f : X → Y such that f(X) is not
separable. Furthermore, here f can be of Baire class 1.
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Theorems

Theorem (PD)

Let X be a projective set, Y a metric space, and f : X → Y a
Borel function. Then f(X) is separable.
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Proof

Proof.

Suppose f(X) is not separable, there is a closed discrete subspace
Z of f(X) with |Z| = ω1. Let W = f−1(Z). It is easy to see that
W is a Borel set in X, so W is a projective set. Now we take a
Bernstein set B of R. Let A ⊆ B with |A| = |Z| = ω1. Then A
does not contain any uncountable closed set. Let g be an
one-to-one map from Z onto A. Since f is Borel and g is
continuous, g ◦ f �W is a Borel function. Since A = g(f(W ))
which is the image of a projective set under a Borel function, A is
a projective set. Then A is an uncountable projective set
containing no perfect set, this contradicts with PD.
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Corollary

Definition

Let X and Y be metric spaces, and let f : X → Y be a Borel
function. The Borel function f is bounded if there is an ordinal α,
1 ≤ α < ω1, such that f−1(U) ∈ Σ0

α for every open set U of Y .
Otherwise we call f unbounded.

Corollary (2ω1 > 2ω)

Let X and Y be metric spaces with X separable, and let
f : X → Y be a Borel function. Then f is bounded.
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An open problem

An open problem which was put forward by A. H. Stone: let
X and Y be metric spaces, f : X → Y a Borel function. Is f
bounded?

Theorem (D. H. Fremlin, R. W. Hansell, H. J. K. Junnila, 1983)

Assume CH, the answer is positive; assume MA(ω1), the answer is
positive too.

So far the Stone’s problem is still open.
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The end

Thank you!
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