Borel Functions and Separability of Metric Spaces Delta 8 Logic Workshop (Zhejiang University)

Kai Gu

School of Mathematical Sciences Nankai University

24 March 2018

◆□> <@> < E> < E> E

Introduction Main results

Outline

K. Gu Borel Functions and Separability of Metric Spaces

Question

Theorem (S. Simpson)

Let X be an analytic set, Y a metric space, and $f: X \to Y$ a Borel function. Then f(X) is separable.

Question: If X is only a separable metric space, is f(X) separable?

We prove that this problem is independent of ZFC.

・ロト ・同ト ・ヨト ・ヨト

Question

Theorem (S. Simpson)

Let X be an analytic set, Y a metric space, and $f: X \to Y$ a Borel function. Then f(X) is separable.

Question: If X is only a separable metric space, is f(X) separable?

We prove that this problem is independent of ZFC.

・ロト ・ 同ト ・ ヨト ・ ヨト

Question

Theorem (S. Simpson)

Let X be an analytic set, Y a metric space, and $f: X \to Y$ a Borel function. Then f(X) is separable.

Question: If X is only a separable metric space, is f(X) separable?

We prove that this problem is independent of ZFC.

Borel sets

Let X be a metric space.

Definition

 $\mathbf{B}(X)$: Borel sets of X is the σ -algebra generated by the open sets of X.

Introduction Main results

Borel hierarchy

$$\begin{split} \boldsymbol{\Sigma}_1^0 = \mathsf{open}, \quad \boldsymbol{\Pi}_1^0 = \mathsf{closed}; \\ \mathsf{For} \ 1 < \alpha < \omega_1, \\ \boldsymbol{\Sigma}_{\alpha}^0 = \{ \bigcup_{n \in \omega} A_n : A_n \in \boldsymbol{\Pi}_{\alpha_n}^0, \alpha_n < \alpha \}; \\ \boldsymbol{\Pi}_{\alpha}^0 = \{ X \setminus A : A \in \boldsymbol{\Sigma}_{\alpha}^0(X) \} \\ \boldsymbol{\Delta}_{\alpha}^0 = \boldsymbol{\Sigma}_{\alpha}^0 \cap \boldsymbol{\Pi}_{\alpha}^0. \\ \mathbf{B}(X) = \bigcup_{1 \leq \alpha < \omega_1} \boldsymbol{\Sigma}_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} \boldsymbol{\Pi}_{\alpha}^0(X). \end{split}$$

Borel functions

Let X and Y be metric spaces, and let $f:X\to Y$ be a function.

Definition

Borel function: $f^{-1}(U)$ is Borel set in X for any U open in Y.

Polish spaces

Definition

Polish space: a separable, completely metrizable topological space.

Example

- 2 countable discrete spaces;
- oproducts of countable many Polish spaces:
 - (a) Hilbert cube \mathbb{I}^{ω} ,
 - (b) Cantor space $\mathcal{C}=\{0,1\}^{\omega}$,
 - (c) Baire space $\mathcal{N}=\omega^\omega$.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Polish spaces

Definition

Polish space: a separable, completely metrizable topological space.

Example

1
$$\mathbb{R}^n, \mathbb{C}^n$$
 and $\mathbb{I} = [0, 1];$

- countable discrete spaces;
- products of countable many Polish spaces:
 - (a) Hilbert cube \mathbb{I}^{ω} ,
 - (b) Cantor space $\mathcal{C} = \{0,1\}^{\omega}$,

(c) Baire space
$$\mathcal{N}=\omega^{\omega}$$
.

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Analytic sets

Definition

Let X be a Polish space. A subset $A \subseteq X$ is *analytic* (or Σ_1^1) if there is a closed subset $C \subseteq X \times \mathcal{N}$ such that

$$x \in A \iff \exists y \in \mathcal{N}((x, y) \in C).$$

A subset $B \subseteq X$ is *co-analytic* (or Π_1^1) if $X \setminus B$ is analytic.

Theorem (Suslin)

Let X be a Polish space and $A \subseteq X$. Then A is Borel iff both A and $X \setminus A$ are analytic.

イロン イヨン イヨン イヨン

Analytic sets

Definition

Let X be a Polish space. A subset $A \subseteq X$ is *analytic* (or Σ_1^1) if there is a closed subset $C \subseteq X \times \mathcal{N}$ such that

$$x \in A \iff \exists y \in \mathcal{N}((x, y) \in C).$$

A subset $B \subseteq X$ is *co-analytic* (or Π_1^1) if $X \setminus B$ is analytic.

Theorem (Suslin)

Let X be a Polish space and $A \subseteq X$. Then A is Borel iff both A and $X \setminus A$ are analytic.

Let X be a Polish space. We have already defined the Σ_1^1 (analytic), Π_1^1 (co-analytic) sets.

$$\begin{split} \boldsymbol{\Sigma}_{n+1}^1 &= \{ \operatorname{proj}_X(A) : X \text{ Polish}, A \subseteq X \times \mathcal{N}, A \in \boldsymbol{\Pi}_n^1(X \times \mathcal{N}) \} \\ \boldsymbol{\Pi}_{n+1}^1 &= \{ X \setminus A : X \text{ Polish}, A \in \boldsymbol{\Sigma}_{n+1}^1(X) \} \\ \boldsymbol{\Delta}_n^1 &= \boldsymbol{\Sigma}_n^1 \cap \boldsymbol{\Pi}_n^1 \\ \boldsymbol{P}(X) &= \bigcup_{n \in \omega} \boldsymbol{\Sigma}_n^1(X) = \bigcup_{n \in \omega} \boldsymbol{\Pi}_n^1(X) \end{split}$$

イロン イヨン イヨン イヨン

With each subset A of ω^{ω} we associate the following game G_A , played by two players I and II. First I chooses a natural number a_0 , then II chooses a natural number b_0 , then I chooses a_1 , then II chooses b_1 , and so on. The game ends after ω steps; if the resulting sequence $\langle a_0, b_0, a_1, b_1, ... \rangle$ is in A, then I wins, otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move to make depending on the previous moves of both players. A strategy is a winning strategy if the player who follows it always wins. The game G_A is determined if one of the players has a winning strategy.

・ロト ・同ト ・ヨト ・ヨト

With each subset A of ω^{ω} we associate the following game G_A , played by two players I and II. First I chooses a natural number a_0 , then II chooses a natural number b_0 , then I chooses a_1 , then II chooses b_1 , and so on. The game ends after ω steps; if the resulting sequence $\langle a_0, b_0, a_1, b_1, \ldots \rangle$ is in A, then I wins, otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move to make depending on the previous moves of both players. A strategy is a winning strategy if the player who follows it always wins. The game G_A is determined if one of the players has a winning strategy.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

With each subset A of ω^{ω} we associate the following game G_A , played by two players I and II. First I chooses a natural number a_0 , then II chooses a natural number b_0 , then I chooses a_1 , then II chooses b_1 , and so on. The game ends after ω steps; if the resulting sequence $\langle a_0, b_0, a_1, b_1, \ldots \rangle$ is in A, then I wins, otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move to make depending on the previous moves of both players. A strategy is a winning strategy if the player who follows it always wins. The game G_A is determined if one of the players has a winning strategy.

Theorem (Martin, 1975)

All Borel games are determined.

Definition

Projective Determinacy (PD): the game G_A is determined for every projective set A.

Theorem (Martin)

If Determinacy (Π_n^1) then every uncountable Σ_{n+1}^1 subset of $\{0,1\}^{\omega}$ has a perfect subset.

Theorem (Martin, 1975)

All Borel games are determined.

Definition

Projective Determinacy (PD): the game G_A is determined for every projective set A.

Theorem (Martin)

If Determinacy (Π_n^1) then every uncountable Σ_{n+1}^1 subset of $\{0,1\}^{\omega}$ has a perfect subset.

Theorem (Martin, 1975)

All Borel games are determined.

Definition

Projective Determinacy (PD): the game G_A is determined for every projective set A.

Theorem (Martin)

If Determinacy (Π_n^1) then every uncountable Σ_{n+1}^1 subset of $\{0,1\}^{\omega}$ has a perfect subset.

Theorem (Martin, 1975)

All Borel games are determined.

Definition

Projective Determinacy (PD): the game G_A is determined for every projective set A.

Theorem (Martin)

If Determinacy (Π_n^1) then every uncountable Σ_{n+1}^1 subset of $\{0,1\}^{\omega}$ has a perfect subset.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Let $\langle \mathbb{P}, \leq \rangle$ be a partial order. A *chain* in \mathbb{P} is a set $C \subseteq \mathbb{P}$ such that $\forall p, q \in C(p \leq q \lor q \leq p)$. p and q are *compatible* iff

 $\exists r \in \mathbb{P}(r \le p \land r \le q);$

they are incompatible $(p \perp q)$ iff $\neg \exists r \in \mathbb{P}(r \leq p \land r \leq q)$. An antichain in \mathbb{P} is a subset $A \subseteq \mathbb{P}$ such that $\forall p, q \in A (p \neq q \rightarrow p \perp q)$.

Definition

A partial order $\langle \mathbb{P}, \leq \rangle$ has the *countable chain condition* (c.c.c.) iff every antichain in \mathbb{P} is countable.

Let $\langle \mathbb{P}, \leq \rangle$ be a partial order. A *chain* in \mathbb{P} is a set $C \subseteq \mathbb{P}$ such that $\forall p, q \in C(p \leq q \lor q \leq p)$. p and q are *compatible* iff

 $\exists r \in \mathbb{P}(r \le p \land r \le q);$

they are incompatible $(p \perp q)$ iff $\neg \exists r \in \mathbb{P}(r \leq p \land r \leq q)$. An antichain in \mathbb{P} is a subset $A \subseteq \mathbb{P}$ such that $\forall p, q \in A (p \neq q \rightarrow p \perp q)$.

Definition

A partial order $\langle \mathbb{P}, \leq \rangle$ has the *countable chain condition* (c.c.c.) iff every antichain in \mathbb{P} is countable.

イロト イポト イヨト イヨト 二日

Definition

Let $\langle \mathbb{P}, \leq \rangle$ be a partial order. $D \subseteq \mathbb{P}$ is *dense* in \mathbb{P} iff $\forall p \in \mathbb{P} \exists q \leq p(q \in D)$. $G \subseteq \mathbb{P}$ is a *filter* in \mathbb{P} iff (a) $\forall p, q \in G \exists r \in G(r \leq p \land r \leq q)$, and (b) $\forall p \in \mathbb{P} \forall q \in G(q \leq p \rightarrow p \in G)$.

 $\mathsf{MA}(\kappa)$ is the statement: Whenever $\langle \mathbb{P}, \leq \rangle$ is a non-empty c.c.c. partial order, and \mathscr{D} is a family of $\leq \kappa$ dense subsets of \mathbb{P} , then there is a filter G in \mathbb{P} such that $\forall D \in \mathscr{D}(G \cap D \neq \varnothing)$. MA is the statement $\forall \kappa < 2^{\omega} (\mathsf{MA}(\kappa))$.

イロン イ団ン イヨン イヨン 三日

Definition

Let $\langle \mathbb{P}, \leq \rangle$ be a partial order. $D \subseteq \mathbb{P}$ is *dense* in \mathbb{P} iff $\forall p \in \mathbb{P} \exists q \leq p(q \in D)$. $G \subseteq \mathbb{P}$ is a *filter* in \mathbb{P} iff (a) $\forall p, q \in G \exists r \in G(r \leq p \land r \leq q)$, and (b) $\forall p \in \mathbb{P} \forall q \in G(q \leq p \rightarrow p \in G)$.

 $\mathsf{MA}(\kappa)$ is the statement: Whenever $\langle \mathbb{P}, \leq \rangle$ is a non-empty c.c.c. partial order, and \mathscr{D} is a family of $\leq \kappa$ dense subsets of \mathbb{P} , then there is a filter G in \mathbb{P} such that $\forall D \in \mathscr{D}(G \cap D \neq \varnothing)$. MA is the statement $\forall \kappa < 2^{\omega} (\mathsf{MA}(\kappa))$.

イロン イ団ン イヨン イヨン 三日

Introduction Main results

K. Gu Borel Functions and Separability of Metric Spaces

Introduction Main results

Recall the question

Let X and Y be metric spaces with X separable, and let $f:X\to Y$ be a Borel function. Is then f(X) separable?

Theorem $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f(X) is separable.

Theorem $(MA(\omega_1))$

There exist metric spaces X and Y with X separable, and a Borel function $f: X \to Y$ such that f(X) is not separable. Furthermore, here f can be of Baire class 1.

・ロト ・回ト ・ヨト ・ヨト

Theorem $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f(X) is separable.

Theorem $(MA(\omega_1))$

There exist metric spaces X and Y with X separable, and a Borel function $f: X \to Y$ such that f(X) is not separable. Furthermore, here f can be of Baire class 1.

・ロト ・回ト ・ヨト ・ヨト

Theorem $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f(X) is separable.

Theorem $(\mathsf{MA}(\omega_1))$

There exist metric spaces X and Y with X separable, and a Borel function $f: X \to Y$ such that f(X) is not separable. Furthermore, here f can be of Baire class 1.

・ロン ・回 と ・ヨン ・ヨン

Theorem
$$(2^{\omega_1} > 2^{\omega})$$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f(X) is separable.

Theorem $(MA(\omega_1))$

There exist metric spaces X and Y with X separable, and a Borel function $f: X \to Y$ such that f(X) is not separable. Furthermore, here f can be of Baire class 1.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (MA + \neg CH + $\omega_1 = \omega_1^L$)

There exist metric spaces X and Y with X a co-analytic subset of \mathbb{R} , and a Borel function $f: X \to Y$ such that f(X) is not separable. Furthermore, here f can be of Baire class 1.

Theorems

Theorem (PD)

Let X be a projective set, Y a metric space, and $f: X \to Y$ a Borel function. Then f(X) is separable.

Proof

Proof.

Suppose f(X) is not separable, there is a closed discrete subspace Z of f(X) with $|Z| = \omega_1$. Let $W = f^{-1}(Z)$. It is easy to see that W is a Borel set in X, so W is a projective set. Now we take a Bernstein set B of \mathbb{R} . Let $A \subseteq B$ with $|A| = |Z| = \omega_1$. Then A does not contain any uncountable closed set. Let g be an one-to-one map from Z onto A. Since f is Borel and g is continuous, $g \circ f \upharpoonright W$ is a Borel function. Since A = g(f(W)) which is the image of a projective set under a Borel function, A is a projective set. Then A is an uncountable projective set containing no perfect set, this contradicts with PD.

Corollary

Definition

Let X and Y be metric spaces, and let $f: X \to Y$ be a Borel function. The Borel function f is *bounded* if there is an ordinal α , $1 \leq \alpha < \omega_1$, such that $f^{-1}(U) \in \Sigma^0_{\alpha}$ for every open set U of Y. Otherwise we call f unbounded.

Corollary $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f is bounded.

Corollary

Definition

Let X and Y be metric spaces, and let $f: X \to Y$ be a Borel function. The Borel function f is *bounded* if there is an ordinal α , $1 \le \alpha < \omega_1$, such that $f^{-1}(U) \in \Sigma^0_{\alpha}$ for every open set U of Y. Otherwise we call f unbounded.

Corollary $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f is bounded.

Corollary

Definition

Let X and Y be metric spaces, and let $f: X \to Y$ be a Borel function. The Borel function f is *bounded* if there is an ordinal α , $1 \le \alpha < \omega_1$, such that $f^{-1}(U) \in \Sigma^0_{\alpha}$ for every open set U of Y. Otherwise we call f unbounded.

Corollary $(2^{\omega_1} > 2^{\omega})$

Let X and Y be metric spaces with X separable, and let $f: X \to Y$ be a Borel function. Then f is bounded.

An open problem which was put forward by A. H. Stone: let X and Y be metric spaces, $f:X\to Y$ a Borel function. Is f bounded?

Theorem (D. H. Fremlin, R. W. Hansell, H. J. K. Junnila, 1983)

Assume CH, the answer is positive; assume $MA(\omega_1)$, the answer is positive too.

So far the Stone's problem is still open.

An open problem which was put forward by A. H. Stone: let X and Y be metric spaces, $f:X\to Y$ a Borel function. Is f bounded?

Theorem (D. H. Fremlin, R. W. Hansell, H. J. K. Junnila, 1983)

Assume CH, the answer is positive; assume $MA(\omega_1)$, the answer is positive too.

So far the Stone's problem is still open.

・ロト ・ 同ト ・ ヨト ・ ヨト

An open problem which was put forward by A. H. Stone: let X and Y be metric spaces, $f:X\to Y$ a Borel function. Is f bounded?

Theorem (D. H. Fremlin, R. W. Hansell, H. J. K. Junnila, 1983)

Assume CH, the answer is positive; assume $MA(\omega_1)$, the answer is positive too.

So far the Stone's problem is still open.

イロト イポト イヨト イヨト

References

- K. Ciesielski, *Set Theory for the Working Mathematician*, Cambridge University Press, 1997.
- D. H. Fremlin, R. W. Hansell, H. J. K. Junnila, *Borel functions* of bounded class, Trans. Amer. Math. Soc. 277, 1983.
- K. Gu, Borel Functions and Separability of Metric Spaces, Archiv der Mathematik, https://doi.org/10.1007/s00013-018-1169-x, 2018.
- A. S. Kechris, D. A. Martin, *Infinite games and effective descriptive set theory*, in: Analytic Sets (Edited by C. A. Rogers), Academic Press, London, 1980, pp. 403-470.
- D. A. Martin, R. Solovay, *Internal Cohen extensions*, Ann. Math. Logic 2, 1970, pp. 143–178.

イロン イ団ン イヨン イヨン 三日

References

- A. W. Miller, *Descriptive Set Theory and Forcing: How to prove theorems about Borel sets the hard way*, Lecture notes in logic, No. 4, Springer, Berlin, Heidelberg, New York, etc., 1995.
- A. W. Miller, Special Subset of the Real Line, in: Handbook of Set-theoretic Topology, K. Kunen, J. E. Vaughan (eds). Elsevier Science Publishers B.V., 1984, pp. 201–233.
- S. M. Srivastava, *A Course on Borel Sets*, Springer-Verlag, New York, 1998.
- A. H. Stone, *Some problems of measurability*, Lecture Notes in Math., vol. 375, Springer-Verlag, Berlin and New York, 1974.

Introduction Main results

Thank you!

K. Gu Borel Functions and Separability of Metric Spaces