# Self-referentiality in the framework of justification logics

#### 俞珺华 Yu, Junhua

#### Department of Philosophy, Tsinghua University

#### 2017.04.14 @ Zhejiang University

イロト イポト イヨト イヨト



- Realization in Justification Logic
- Self-referentiality
- Properties of non-self-referential fragments

Justification Logics JI Realization

#### • Realization in Justification Logic

ヘロト 人間 とくほとくほとう

Justification Logics JL Realization

#### Justification logics JL

#### • Explicit versions of modal logics ML.

- $\Box \phi$  v.s.  $t : \phi$ ,
- *t* explains contents implicitly indicated by  $\Box$ .
- Language: propositional, extended by *t*: *φ*.
  - *t* is a term (inductively defined, sensitive to logics),
  - $\phi$  is a formula in **this** language (where terms may occur in).
- The family of JL: >30 members, serving as explicit versions to many well-known ML's.
  - We will focus on the following five pairs:

ML K D T K4 S4

JL J JD JT J4 LP

Justification Logics JL Realization

#### Justification logics JL

#### • Explicit versions of modal logics ML.

- $\Box \phi$  v.s.  $t : \phi$ ,
- *t* explains contents implicitly indicated by  $\Box$ .
- Language: propositional, extended by *t*: *φ*.
  - *t* is a term (inductively defined, sensitive to logics),
  - $\phi$  is a formula in this language (where terms may occur in).
- The family of JL: >30 members, serving as explicit versions to many well-known ML's.
  - We will focus on the following five pairs:

ML K D T K4 S4

JL J JD JT J4 LP

・ 同 ト ・ 国 ト ・ 国 ト …

Justification Logics JL Realization

#### The Logic of Proofs LP as an example

- By Artemov in 1995.
- $\phi := \perp |\rho| \phi \rightarrow \phi |t; \phi,$  $t := c |x| t \cdot t |t+t|!t.$
- Axiom schemes:
  - Classical propositional axioms,
  - $t: \phi \rightarrow \phi$ ,
  - $t_1: (\phi \rightarrow \psi) \rightarrow (t_2: \phi \rightarrow t_1 \cdot t_2: \psi),$
  - $t: \phi \rightarrow !t: t: \phi$ ,
  - $t_1: \phi \rightarrow t_1 + t_2: \phi$  and  $t_2: \phi \rightarrow t_1 + t_2: \phi$ .
- Rules schemes:

- $\vdash c : A$ , where c is a constant, and A is an axiom.
- Explicit version of modal logic S4.
- Formally, the implicit/explicit correspondence is called realization.

Justification Logics JL Realization

#### The Logic of Proofs LP as an example

- By Artemov in 1995.
- $\phi := \bot | \boldsymbol{p} | \phi \rightarrow \phi | t : \phi,$ 
  - $t := c |x| t \cdot t |t+t|!t.$
- Axiom schemes:
  - Classical propositional axioms,
  - $t: \phi \rightarrow \phi$ ,
  - $t_1: (\phi \rightarrow \psi) \rightarrow (t_2: \phi \rightarrow t_1 \cdot t_2: \psi),$
  - $t: \phi \rightarrow !t: t: \phi$ ,
  - $t_1: \phi \to t_1 + t_2: \phi \text{ and } t_2: \phi \to t_1 + t_2: \phi$ .
- Rules schemes:

- $\vdash c : A$ , where c is a constant, and A is an axiom.
- Explicit version of modal logic S4.
- Formally, the implicit/explicit correspondence is called realization.

Justification Logics JL Realization

#### The Logic of Proofs LP as an example

- By Artemov in 1995.
- $\phi := \bot | \boldsymbol{p} | \phi \rightarrow \phi | t : \phi,$ 
  - $t := c |x| t \cdot t |t+t|!t.$
- Axiom schemes:
  - Classical propositional axioms,
  - $t: \phi \rightarrow \phi$ ,
  - $t_1: (\phi \rightarrow \psi) \rightarrow (t_2: \phi \rightarrow t_1 \cdot t_2: \psi),$
  - $t: \phi \rightarrow !t: t: \phi$ ,
  - $t_1: \phi \to t_1 + t_2: \phi$  and  $t_2: \phi \to t_1 + t_2: \phi$ .
- Rules schemes:

- $\vdash c : A$ , where c is a constant, and A is an axiom.
- Explicit version of modal logic S4.
- Formally, the implicit/explicit correspondence is called realization.

Justification Logics JL Realization

#### The Logic of Proofs LP as an example

- By Artemov in 1995.
- $\phi := \bot | \boldsymbol{p} | \phi \rightarrow \phi | t : \phi,$ 
  - $t := c |x| t \cdot t |t+t|!t.$
- Axiom schemes:
  - Classical propositional axioms,
  - $t: \phi \rightarrow \phi$ ,
  - $t_1: (\phi \rightarrow \psi) \rightarrow (t_2: \phi \rightarrow t_1 \cdot t_2: \psi),$
  - $t:\phi \rightarrow !t:t:\phi$ ,
  - $t_1: \phi \to t_1 + t_2: \phi \text{ and } t_2: \phi \to t_1 + t_2: \phi$ .
- Rules schemes:

- $\vdash c : A$ , where c is a constant, and A is an axiom.
- Explicit version of modal logic S4.
- Formally, the implicit/explicit correspondence is called realization.

Justification Logics JL Realization

### Realization

- Realizer
  - A mapping: the language of ML ~> that of a JL;
  - Assigns a term to each  $\Box$ -occurrence in the input formula.
- Realization
  - Given realizer (·)<sup>r</sup> and modal formula φ, the image φ<sup>r</sup> is a potential realization;
  - $\phi^r$  is a realization if further  $JL \vdash \phi^r$ .

イロト 不得 とくほ とくほとう

Realization

- Realizer
  - A mapping: the language of ML ~> that of a JL;
  - Assigns a term to each  $\Box$ -occurrence in the input formula.

Realization

- Realization
  - Given realizer (·)<sup>r</sup> and modal formula φ, the image φ<sup>r</sup> is a potential realization;
  - $\phi^r$  is a realization if further  $JL \vdash \phi^r$ .

イロト イポト イヨト イヨト

Justification Logics JL Realization

#### Realization (continued)

- Realization theorem (Artemov 1995 & Brezhnev 2000)
  - For any modal formula  $\phi$ :
    - Let  $X \in \{K, D, T, K4, S4\}$ ,
    - and  $Y \in \{J, JD, JT, J4, LP\},$  resp.,
  - Then what follows are equivalent:
    - $X \vdash \phi$ ;
    - $\mathbf{Y} \vdash \phi^r$  for some realizer  $(\cdot)^r$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

| Realization in JL          | In Justification Logics               |
|----------------------------|---------------------------------------|
| Self-referentiality        | In Modal Logics                       |
| Properties of NR Fragments | In Intuitionistic Propositional Logic |

#### Self-referentiality

イロン イロン イヨン イヨン

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Self-referential JL-formulas

#### • (recalled) Justification language (LP as an example)

- Formula  $\phi := \bot | p | \phi \rightarrow \phi | t : \phi;$
- Term  $t := c | x | t \cdot t | t + t | !t$ .
- self-referential formulas like  $t: \phi(t)$

• even c: A(c) is possible.

イロト イポト イヨト イヨト

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Self-referential JL-formulas

- (recalled) Justification language (LP as an example)
  - Formula  $\phi := \bot | p | \phi \rightarrow \phi | t : \phi;$
  - Term  $t := c |x| t \cdot t |t+t|!t$ .
- self-referential formulas like  $t: \phi(t)$ 
  - even c: A(c) is possible.

イロト イ理ト イヨト イヨト

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Constant specification $\mathcal{CS}$

- Definition (take LP as our example):
  - A set of formulas of the form *c*: *A*.
- Link axioms with constants that present them in terms.
- JL(*CS*) is the fragment of JL where rule scheme *AN* can only put formulas from *CS*.
  - e.g.,  $JL(\emptyset)$  is the fragment of JL without AN.

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Constant specification $\mathcal{CS}$

- Definition (take LP as our example):
  - A set of formulas of the form *c*: *A*.
- Link axioms with constants that present them in terms.
- JL(CS) is the fragment of JL where rule scheme AN can only put formulas from CS.
  - e.g.,  $JL(\emptyset)$  is the fragment of JL without AN.

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Self-referentiality of $\mathcal{CS}$

- Take LP as our example.
- CS is (directly) self-referential, if for some c and A

 $c: A(c) \in CS.$ 

- Let  $CS^* := \{c: A \mid c \text{ does not occur in } A\};$ 
  - The largest non-self-referential constant specification.
  - Thus, JL(*CS*<sup>\*</sup>) is the fragment of JL where *AN* can only introduce non-self-referential formulas.

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Self-referentiality of $\mathcal{CS}$

- Take LP as our example.
- CS is (directly) self-referential, if for some c and A

$$c: A(c) \in CS.$$

- Let  $CS^* := \{c: A \mid c \text{ does not occur in } A\};$ 
  - The largest non-self-referential constant specification.
  - Thus, JL(CS<sup>\*</sup>) is the fragment of JL where AN can only introduce non-self-referential formulas.

## ML<sup>NR</sup>: non-self-referential realizable fragment of ML

#### • Definition:

- Let  $X \in \{K, D, T, K4, S4\}$ , and  $Y \in \{J, JD, JT, J4, LP\}$ , resp.;
- $X^{NR} := \{X \vdash \phi \mid Y(\mathcal{CS}^*) \vdash \phi^r \text{ for some realizer } (\cdot)^r\}.$
- A model theorem is non-self-referential if being in ML<sup>NR</sup>, and self-referential otherwise.
- Self-referential modal-theorems exist. (Kuznets 2006 & 2008):
  - $K^{NR} = K$
  - $\mathsf{D}^{NR} = \mathsf{D}$
  - $\Diamond(p \to \Box p) \in \mathsf{T} \setminus \mathsf{T}^{NR}$
  - $\Box \neg (p \rightarrow \Box p) \rightarrow \Box \bot \in \mathsf{K4} \setminus \mathsf{K4}^{\mathsf{NI}}$
  - $\bullet \hspace{0.1 cm} \Diamond(p \rightarrow \Box p) \in \mathsf{S4} \setminus \mathsf{S4}^{\mathit{NR}}$

ヘロト ヘアト ヘビト ヘビト

3

## ML<sup>NR</sup>: non-self-referential realizable fragment of ML

#### • Definition:

- Let  $X \in \{K, D, T, K4, S4\},$  and  $Y \in \{J, JD, JT, J4, LP\},$  resp.;
- $X^{NR} := \{X \vdash \phi \mid Y(\mathcal{CS}^*) \vdash \phi^r \text{ for some realizer } (\cdot)^r\}.$
- A model theorem is non-self-referential if being in ML<sup>NR</sup>, and self-referential otherwise.
- Self-referential modal-theorems exist. (Kuznets 2006 & 2008):
  - $K^{NR} = K$
  - $D^{NR} = D$
  - $\Diamond(p \to \Box p) \in \mathsf{T} \setminus \mathsf{T}^{NR}$
  - $\Box \neg (p \rightarrow \Box p) \rightarrow \Box \bot \in \mathsf{K4} \setminus \mathsf{K4}^{\mathsf{NI}}$
  - $\bullet \hspace{0.1 cm} \Diamond(p \rightarrow \Box p) \in \mathsf{S4} \setminus \mathsf{S4}^{\textit{NR}}$

ヘロト ヘアト ヘビト ヘビト

3

## ML<sup>NR</sup>: non-self-referential realizable fragment of ML

#### • Definition:

- Let  $X \in \{K, D, T, K4, S4\},$  and  $Y \in \{J, JD, JT, J4, LP\},$  resp.;
- $X^{NR} := \{X \vdash \phi \mid Y(CS^*) \vdash \phi^r \text{ for some realizer } (\cdot)^r\}.$
- A model theorem is non-self-referential if being in ML<sup>NR</sup>, and self-referential otherwise.
- Self-referential modal-theorems exist. (Kuznets 2006 & 2008):
  - $K^{NR} = K$
  - $\mathsf{D}^{NR} = \mathsf{D}$
  - $\Diamond(p \to \Box p) \in \mathsf{T} \setminus \mathsf{T}^{NR}$
  - $\Box \neg (p \rightarrow \Box p) \rightarrow \Box \bot \in \mathsf{K4} \setminus \mathsf{K4}^{NR}$
  - $\Diamond(p \to \Box p) \in S4 \setminus S4^{NR}$

・ 同 ト ・ ヨ ト ・ ヨ ト

## ML<sup>NR</sup>: non-self-referential realizable fragment of ML

#### • Definition:

- Let  $X \in \{K, D, T, K4, S4\},$  and  $Y \in \{J, JD, JT, J4, LP\},$  resp.;
- $\mathsf{X}^{NR} := {\{\mathsf{X} \vdash \phi \mid \mathsf{Y}(\mathcal{CS}^*) \vdash \phi^r \text{ for some realizer } (\cdot)^r\}}.$
- A model theorem is non-self-referential if being in ML<sup>NR</sup>, and self-referential otherwise.
- Self-referential modal-theorems exist. (Kuznets 2006 & 2008):
  - $K^{NR} = K$
  - $\mathsf{D}^{NR} = \mathsf{D}$
  - $\Diamond(p \rightarrow \Box p) \in \mathsf{T} \setminus \mathsf{T}^{NR}$
  - $\Box \neg (p \rightarrow \Box p) \rightarrow \Box \bot \in \mathsf{K4} \setminus \mathsf{K4}^{NR}$
  - $(p \rightarrow \Box p) \in S4 \setminus S4^{NR}$

・聞き ・ヨト ・ヨト

#### Realizing intuitionistic propositional logic IPC via S4

- The initial motivation of Artemov's LP;
- The Gödel–Artemov formalization of BHK semantics;
- Gödel's modal embedding (·)<sup>△</sup> is a mapping from propositional language to propositional modal language that satisfies:

$$\begin{cases} p^{\triangle} = \Box p \\ \bot^{\triangle} = \Box \bot \\ (\phi \oplus \psi)^{\triangle} = \Box (\phi^{\triangle} \oplus \psi^{\triangle}) \text{ for } \oplus \in \{\land, \lor, \rightarrow\}. \end{cases}$$

 Sound-and-faithfully embeds IPC into S4, i.e., IPC ⊢ φ iff S4 ⊢ φ<sup>△</sup> (McKinsey & Tarski 1948).

#### Realizing intuitionistic propositional logic IPC via S4

- The initial motivation of Artemov's LP;
- The Gödel-Artemov formalization of BHK semantics;
- Gödel's modal embedding (·)<sup>△</sup> is a mapping from propositional language to propositional modal language that satisfies:

$$\begin{cases} \boldsymbol{p}^{\triangle} = \Box \boldsymbol{p} \\ \bot^{\triangle} = \Box \bot \\ (\phi \oplus \psi)^{\triangle} = \Box (\phi^{\triangle} \oplus \psi^{\triangle}) \text{ for } \oplus \in \{\land, \lor, \rightarrow\}. \end{cases}$$

• Sound-and-faithfully embeds IPC into S4, i.e., IPC  $\vdash \phi$  iff S4  $\vdash \phi^{\triangle}$  (McKinsey & Tarski 1948).

#### Realizing intuitionistic propositional logic IPC via S4

- The initial motivation of Artemov's LP;
- The Gödel-Artemov formalization of BHK semantics;
- Gödel's modal embedding (·)<sup>△</sup> is a mapping from propositional language to propositional modal language that satisfies:

$$\begin{cases} \boldsymbol{p}^{\bigtriangleup} = \Box \boldsymbol{p} \\ \bot^{\bigtriangleup} = \Box \bot \\ (\phi \oplus \psi)^{\bigtriangleup} = \Box (\phi^{\bigtriangleup} \oplus \psi^{\bigtriangleup}) \text{ for } \oplus \in \{\land, \lor, \rightarrow\}. \end{cases}$$

• Sound-and-faithfully embeds IPC into S4, i.e., IPC  $\vdash \phi$  iff S4  $\vdash \phi^{\triangle}$  (McKinsey & Tarski 1948).

ヘロト ヘワト ヘビト ヘビト

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### **Basic embeddings**

#### • An extension of Gödel's modal embedding.

• A potential embedding  $((\cdot)^{\times})$  is basic if (let  $\odot \in \{\land,\lor\}$ ):

$$\begin{pmatrix} \phi^{\times} = \phi^{\times}_{+} \\ p^{\times}_{+} = \Box^{h_{+}}p \quad p^{\times}_{-} = \Box^{h_{-}}p \quad \text{similar for } \bot \\ (\phi \odot \psi)^{\times}_{+} = \Box^{j_{\odot +}}(\Box^{k_{\odot +}}\phi^{\times}_{+} \odot \Box^{l_{\odot +}}\psi^{\times}_{+}) \\ (\phi \odot \psi)^{\times}_{-} = \Box^{j_{\odot -}}(\Box^{k_{\odot -}}\phi^{\times}_{-} \odot \Box^{l_{\odot -}}\psi^{\times}_{-}) \\ (\phi \rightarrow \psi)^{\times}_{+} = \Box^{j_{\rightarrow +}}(\Box^{k_{\rightarrow +}}\phi^{\times}_{+} \rightarrow \Box^{L_{\rightarrow +}}\psi^{\times}_{+}) \\ (\phi \rightarrow \psi)^{\times}_{-} = \Box^{j_{\rightarrow -}}(\Box^{k_{\rightarrow -}}\phi^{\times}_{+} \rightarrow \Box^{L_{\rightarrow -}}\psi^{\times}_{-})$$

- A basic embedding is a potential one that satisfies: IPC ⊢ φ iff S4 ⊢ φ<sup>×</sup>.
  - possible applications on other logic pairs.

ヘロト ヘアト ヘビト ヘビト

1

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### **Basic embeddings**

- An extension of Gödel's modal embedding.
- A potential embedding  $((\cdot)^{\times})$  is basic if (let  $\odot \in \{\land,\lor\}$ ):

$$\left\{ \begin{array}{l} \phi^{\times} = \phi^{\times}_{+} \\ p^{\times}_{+} = \Box^{h_{+}} p \quad p^{\times}_{-} = \Box^{h_{-}} p \quad \text{similar for } \bot \\ (\phi \odot \psi)^{\times}_{+} = \Box^{j_{\odot +}} (\Box^{k_{\odot +}} \phi^{\times}_{+} \odot \Box^{l_{\odot +}} \psi^{\times}_{+}) \\ (\phi \odot \psi)^{\times}_{-} = \Box^{j_{\odot -}} (\Box^{k_{\odot -}} \phi^{\times}_{-} \odot \Box^{l_{\odot -}} \psi^{\times}_{-}) \\ (\phi \rightarrow \psi)^{\times}_{+} = \Box^{j_{\rightarrow +}} (\Box^{k_{\rightarrow +}} \phi^{\times}_{+} \rightarrow \Box^{L_{\rightarrow +}} \psi^{\times}_{+}) \\ (\phi \rightarrow \psi)^{\times}_{-} = \Box^{j_{\rightarrow -}} (\Box^{k_{\rightarrow -}} \phi^{\times}_{+} \rightarrow \Box^{L_{\rightarrow -}} \psi^{\times}_{-}) \end{array} \right.$$

- A basic embedding is a potential one that satisfies: IPC ⊢ φ iff S4 ⊢ φ<sup>×</sup>.
  - possible applications on other logic pairs.

In Justification Logics In Modal Logics In Intuitionistic Propositional Logic

#### Basic embeddings

- An extension of Gödel's modal embedding.
- A potential embedding  $((\cdot)^{\times})$  is basic if (let  $\odot \in \{\land,\lor\}$ ):

$$\left\{ \begin{array}{l} \phi^{\times} = \phi^{\times}_{+} \\ p^{\times}_{+} = \Box^{h_{+}} p \quad p^{\times}_{-} = \Box^{h_{-}} p \quad \text{similar for } \bot \\ (\phi \odot \psi)^{\times}_{+} = \Box^{j_{\odot^{+}}} (\Box^{k_{\odot^{+}}} \phi^{\times}_{+} \odot \Box^{l_{\odot^{+}}} \psi^{\times}_{+}) \\ (\phi \odot \psi)^{\times}_{-} = \Box^{j_{\odot^{-}}} (\Box^{k_{\odot^{-}}} \phi^{\times}_{-} \odot \Box^{l_{\odot^{-}}} \psi^{\times}_{-}) \\ (\phi \rightarrow \psi)^{\times}_{+} = \Box^{j_{\rightarrow^{+}}} (\Box^{k_{\rightarrow^{+}}} \phi^{\times}_{+} \rightarrow \Box^{l_{\rightarrow^{+}}} \psi^{\times}_{+}) \\ (\phi \rightarrow \psi)^{\times}_{-} = \Box^{j_{\rightarrow^{-}}} (\Box^{k_{\rightarrow^{-}}} \phi^{\times}_{+} \rightarrow \Box^{l_{\rightarrow^{-}}} \psi^{\times}_{-}) \end{array} \right.$$

 A basic embedding is a potential one that satisfies: IPC ⊢ φ iff S4 ⊢ φ<sup>×</sup>.

• possible applications on other logic pairs.

ヘロト 人間 ト ヘヨト ヘヨト

### IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### • Definition:

- $\mathsf{IPC}^{\mathsf{NR}(\times)} := \{\mathsf{IPC} \vdash \phi \,|\, \phi^{\times} \in \mathsf{S4}^{\mathsf{NR}}\};$
- $\operatorname{IPC}^{NR} := \bigcup_{\times} \operatorname{IPC}^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $\mathsf{IPC}_{\rightarrow}^{\mathit{NR}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\mathit{NR}}$  are similarly defined based on  $\mathsf{IPC}_{\rightarrow}.$
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q \in \mathsf{IPC}_{\rightarrow} \setminus \mathsf{IPC}_{\rightarrow}^{NR}$

ヘロト ヘアト ヘビト ヘビト

### IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### Definition:

- $\operatorname{IPC}^{NR(\times)} := \{\operatorname{IPC} \vdash \phi \mid \phi^{\times} \in \operatorname{S4}^{NR}\};$
- $\operatorname{IPC}^{NR} := \bigcup_{\times} \operatorname{IPC}^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $\mathsf{IPC}^{\mathit{NR}(\times)}_{\rightarrow}$  and  $\mathsf{IPC}^{\mathit{NR}}_{\rightarrow}$  are similarly defined based on  $\mathsf{IPC}_{\rightarrow}.$
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q \in \mathsf{IPC}_{\rightarrow} \setminus \mathsf{IPC}_{\rightarrow}^{NR}$

ヘロト ヘアト ヘビト ヘビト

IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### Definition:

- $\operatorname{IPC}^{NR(\times)} := \{\operatorname{IPC} \vdash \phi \mid \phi^{\times} \in \operatorname{S4}^{NR}\};$
- $IPC^{NR} := \bigcup_{\times} IPC^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $IPC_{\rightarrow}^{NR(\times)}$  and  $IPC_{\rightarrow}^{NR}$  are similarly defined based on  $IPC_{\rightarrow}$ .
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $\bullet \hspace{0.1 in} ((((p \!\rightarrow\! q) \!\rightarrow\! p) \!\rightarrow\! p) \!\rightarrow\! q) \!\rightarrow\! q \in \mathsf{IPC}_{\rightarrow} \setminus \mathsf{IPC}_{\rightarrow}^{NR}$

ヘロン 人間 とくほ とくほ とう

1

IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### • Definition:

- $\mathsf{IPC}^{\mathsf{NR}(\times)} := \{\mathsf{IPC} \vdash \phi \mid \phi^{\times} \in \mathsf{S4}^{\mathsf{NR}}\};$
- $\operatorname{IPC}^{NR} := \bigcup_{\times} \operatorname{IPC}^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $IPC_{\rightarrow}^{\textit{NR}(\times)}$  and  $IPC_{\rightarrow}^{\textit{NR}}$  are similarly defined based on  $IPC_{\rightarrow}.$
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $((((p 
    ightarrow q) 
    ightarrow p) 
    ightarrow q) 
    ightarrow q \in \mathsf{IPC}_{
    ightarrow} \setminus \mathsf{IPC}_{
    ightarrow}^{NR}$

Realization in JL In Justification Lo Self-referentiality In Modal Logics roperties of NR Fragments In Intuitionistic Pr

In Modal Logics In Intuitionistic Propositional Logic

### IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### • Definition:

- $\mathsf{IPC}^{\mathsf{NR}(\times)} := \{\mathsf{IPC} \vdash \phi \mid \phi^{\times} \in \mathsf{S4}^{\mathsf{NR}}\};$
- $\operatorname{IPC}^{NR} := \bigcup_{\times} \operatorname{IPC}^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $\mathsf{IPC}_{\rightarrow}^{\textit{NR}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\textit{NR}}$  are similarly defined based on  $\mathsf{IPC}_{\rightarrow}.$
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q \in \mathsf{IPC}_{\rightarrow} \setminus \mathsf{IPC}_{\rightarrow}^{NR}$

ヘロン 人間 とくほ とくほ とう

-

IPC<sup>NR</sup>: non-self-referential realizable fragment of IPC

#### • Definition:

- $\mathsf{IPC}^{\mathsf{NR}(\times)} := \{\mathsf{IPC} \vdash \phi \mid \phi^{\times} \in \mathsf{S4}^{\mathsf{NR}}\};$
- $\operatorname{IPC}^{NR} := \bigcup_{\times} \operatorname{IPC}^{NR(\times)};$
- An intuitionistic theorem is non-self-referential if being in IPC<sup>NR</sup>, and self-referential otherwise;
- $\mathsf{IPC}_{\rightarrow}^{\textit{NR}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\textit{NR}}$  are similarly defined based on  $\mathsf{IPC}_{\rightarrow}.$
- Self-referential IPC-theorem exists. (Yu 2014):
  - $\{\neg \neg \alpha \mid \alpha \in \mathsf{CPC} \setminus \mathsf{IPC}\} \subseteq \mathsf{IPC} \setminus \mathsf{IPC}^{\mathsf{NR}}$
  - $((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q \in \mathsf{IPC}_{\rightarrow} \setminus \mathsf{IPC}_{\rightarrow}^{NR}$

| Realization in JL          | A Wieldy Tool                |
|----------------------------|------------------------------|
| Self-referentiality        | Failures of MP               |
| Properties of NR Fragments | Between NR fragments of ML's |

#### Properties of non-self-referential realizable fragments

<ロ> (四) (四) (日) (日) (日)

э

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric-cycle-free provable fragment

- For each logic mentioned above,
  - the *CF* (prehistoric-cycle-free provable) fragment is a subset of

the NR (non-self-referential realizable) fragment;

- The best known approximation;
- Decidable, wieldy for simple formulas.

ヘロト ヘアト ヘビト ヘ

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### The underline calculus G3[st4]

Ax.
$$\overline{\rho,\Gamma\Rightarrow\Delta,\rho}$$
 $L\perp$ . $\overline{\perp,\Gamma\Rightarrow\Delta}$  $L\rightarrow$ . $\Gamma\Rightarrow\Delta,\phi~\psi,\Gamma\Rightarrow\Delta$  $R\rightarrow$ . $\overline{\psi,\Gamma\Rightarrow\Delta,\psi}$  $L\rightarrow$ . $\overline{\psi,\Gamma\Rightarrow\Delta,\phi\to\psi}$  $R\rightarrow$ . $\overline{\psi,\Gamma\Rightarrow\Delta,\psi\to\psi}$  $L\square$ . $\frac{\theta,\Box\theta,\Gamma\Rightarrow\Delta}{\Box\theta,\Gamma\Rightarrow\Delta}$  $R\square$ . $\frac{\Box\Theta\Rightarrow\eta}{\Box\Theta,\Gamma\Rightarrow\Delta,\Box\eta}$  $4\Box$ . $\frac{\Theta,\Box\Theta\Rightarrow\eta}{\Box\Theta,\Gamma\Rightarrow\Delta,\Box\eta}$  $K\Box$ . $\frac{\Theta\Rightarrow\eta}{\Box\Theta,\Gamma\Rightarrow\Delta,\Box\eta}$ 

- G3cp:  $Ax, L \perp, L \rightarrow, R \rightarrow$ ;
- G3t: G3cp with  $L\Box$ ,  $K\Box$ ;
- $\Box \Theta := \{ \Box \theta \mid \theta \in \Theta \}.$

G3s: G3cp with  $L\Box$ ,  $R\Box$ ; G34: G3cp with  $4\Box$ .

ヘロト ヘアト ヘビト ヘビト

1

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric graph and prehistoric cycle

- Given a proof tree  $\mathcal{T} = (T, R)$ , the prehistoric graph of  $\mathcal{T}$  is  $\mathcal{P}(\mathcal{T}) := (F, \prec)$ , where
  - *F* is the set of families of positive  $\Box$ 's in the proof tree T,

• (take G3s for instance)  

$$\prec := \{ \langle i, j \rangle \mid \langle (\Box \Theta(\Box_i) \Rightarrow \eta), (\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta) \rangle \in R \},$$
• i.e.,  $\frac{\Box \Theta(\Box_i) \Rightarrow \eta}{\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta} (R \Box)$  is a step in  $\mathcal{T}$ .

- Given  $\mathcal{T}$ , a prehistoric cycle is a cycle in  $\mathcal{P}(\mathcal{T})$ .
- A proof  $\mathcal{T}$  is cycle-free, if  $\mathcal{P}(\mathcal{T})$  has no cycle.

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric graph and prehistoric cycle

- Given a proof tree  $\mathcal{T} = (T, R)$ , the prehistoric graph of  $\mathcal{T}$  is  $\mathcal{P}(\mathcal{T}) := (F, \prec)$ , where
  - *F* is the set of families of positive  $\Box$ 's in the proof tree T,

• (take G3s for instance)  

$$\prec := \{ \langle i, j \rangle \mid \langle (\Box \Theta(\Box_i) \Rightarrow \eta), (\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta) \rangle \in R \},$$
• i.e.,  $\frac{\Box \Theta(\Box_i) \Rightarrow \eta}{\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta} (R \Box)$  is a step in  $\mathcal{T}$ .

- Given  $\mathcal{T}$ , a prehistoric cycle is a cycle in  $\mathcal{P}(\mathcal{T})$ .
- A proof  $\mathcal{T}$  is cycle-free, if  $\mathcal{P}(\mathcal{T})$  has no cycle.

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric graph and prehistoric cycle

- Given a proof tree  $\mathcal{T} = (T, R)$ , the prehistoric graph of  $\mathcal{T}$  is  $\mathcal{P}(\mathcal{T}) := (F, \prec)$ , where
  - *F* is the set of families of positive  $\Box$ 's in the proof tree T,

• (take G3s for instance)  

$$\prec := \{ \langle i, j \rangle \mid \langle (\Box \Theta(\Box_i) \Rightarrow \eta), (\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta) \rangle \in R \},$$
• i.e.,  $\frac{\Box \Theta(\Box_i) \Rightarrow \eta}{\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta} (R \Box)$  is a step in  $\mathcal{T}$ .

- Given  $\mathcal{T}$ , a prehistoric cycle is a cycle in  $\mathcal{P}(\mathcal{T})$ .
- A proof  $\mathcal{T}$  is cycle-free, if  $\mathcal{P}(\mathcal{T})$  has no cycle.

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric graph and prehistoric cycle

- Given a proof tree  $\mathcal{T} = (T, R)$ , the prehistoric graph of  $\mathcal{T}$  is  $\mathcal{P}(\mathcal{T}) := (F, \prec)$ , where
  - *F* is the set of families of positive  $\Box$ 's in the proof tree T,

• (take G3s for instance)  

$$\prec := \{ \langle i, j \rangle \mid \langle (\Box \Theta(\Box_i) \Rightarrow \eta), (\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta) \rangle \in R \},$$
• i.e.,  $\frac{\Box \Theta(\Box_i) \Rightarrow \eta}{\Box \Theta(\Box_i), \Gamma \Rightarrow \Delta, \Box_j \eta} (R \Box)$  is a step in  $\mathcal{T}$ .

- Given  $\mathcal{T}$ , a prehistoric cycle is a cycle in  $\mathcal{P}(\mathcal{T})$ .
- A proof  $\mathcal{T}$  is cycle-free, if  $\mathcal{P}(\mathcal{T})$  has no cycle.

< 口 > < 同 > < 臣 > < 臣 >

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric-cycle-free fragments

#### Definition:

- Let  $X \in \{T, K4, S4\}$ , and  $Y \in \{G3t, G34, G3s\}$ , resp.;
  - $X^{CF} := \{\phi \mid (\Rightarrow \phi) \text{ has a cycle-free proof in } Y\}.$
- For a basic embedding  $(\cdot)^{\times}$ :
  - $\operatorname{IPC}_{\operatorname{CF}}^{\operatorname{CF}(\times)} := \{\operatorname{IPC} \vdash \phi \mid \phi^{\times} \in \operatorname{S4}^{\operatorname{CF}}\};$
  - $\mathsf{IPC}^{CF} := \bigcup_{\times} \mathsf{IPC}^{CF(\times)};$
  - $\bullet~ \mathsf{IPC}_{\rightarrow}^{\mathit{CF}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\mathit{CF}}$  are similarly defined.
- $\in CF$  is sufficient to  $\in NR$  (Yu 2010 & 2014):
  - If  $X \in \{T, K4, S4, IPC, IPC_{\rightarrow}\}$ , then  $X^{CF} \subseteq X^{NR}$ .

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric-cycle-free fragments

Definition:

- Let  $X \in \{T, K4, S4\},$  and  $Y \in \{G3t, G34, G3s\},$  resp.;
  - $X^{CF} := \{\phi \mid (\Rightarrow \phi) \text{ has a cycle-free proof in } Y\}.$
- For a basic embedding  $(\cdot)^{\times}$ :
  - $\operatorname{IPC}_{\mathcal{F}}^{CF(\times)} := \{\operatorname{IPC} \vdash \phi \mid \phi^{\times} \in \operatorname{S4}^{CF}\};$
  - $\operatorname{IPC}^{CF} := \bigcup_{\times} \operatorname{IPC}^{CF(\times)};$
  - $\mathsf{IPC}_{\rightarrow}^{\mathit{CF}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\mathit{CF}}$  are similarly defined.
- $\in CF$  is sufficient to  $\in NR$  (Yu 2010 & 2014): • If  $X \in \{T, K4, S4, IPC, IPC_{\rightarrow}\}$ , then  $X^{CF} \subseteq X^{NR}$ .

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Prehistoric-cycle-free fragments

• Definition:

- Let  $X \in \{T, K4, S4\},$  and  $Y \in \{G3t, G34, G3s\},$  resp.;
  - $X^{CF} := \{\phi \mid (\Rightarrow \phi) \text{ has a cycle-free proof in } Y\}.$
- For a basic embedding  $(\cdot)^{\times}$ :
  - $\mathsf{IPC}^{CF(\times)} := \{\mathsf{IPC} \vdash \phi \mid \phi^{\times} \in \mathsf{S4}^{CF}\};$
  - $\mathsf{IPC}^{CF} := \bigcup_{\times} \mathsf{IPC}^{CF(\times)};$
  - $\mathsf{IPC}_{\rightarrow}^{\mathit{CF}(\times)}$  and  $\mathsf{IPC}_{\rightarrow}^{\mathit{CF}}$  are similarly defined.
- $\in CF$  is sufficient to  $\in NR$  (Yu 2010 & 2014):
  - If  $X \in \{T, K4, S4, IPC, IPC_{\rightarrow}\}$ , then  $X^{\textit{CF}} \subseteq X^{\textit{NR}}.$

< □ > < 同 > < 回 > < 回

A Wieldy Tool Failures of MP Between NR fragments of ML's

#### Properties of CF fragments

#### • Let $X \in \{T, K4, S4\}$ :

- $\phi \in X^{CF}$  iff  $\Box \phi \in X^{CF}$  (necessitation).
- $\phi \in X^{CF}$  implies  $\phi[p/\psi] \in X^{CF}$  (uniform substitution).
- X<sup>CF</sup> contains:

$$-\perp \rightarrow p$$

$$-p 
ightarrow (q 
ightarrow p).$$

$$-(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

$$-((p \rightarrow q) \rightarrow p) \rightarrow p.$$

$$-\Box(\rho \rightarrow q) \rightarrow (\Box p \rightarrow \Box q).$$

$$-\Box p \rightarrow p$$
 (for T, S4).

$$-\Box p \rightarrow \Box \Box p$$
 (for K4, S4).

- X<sup>CF</sup> contains all axiom instances in X.
  - Applying uniform substitution to the above.

### • $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{CF}$ .

ヘロト 人間 ト ヘヨト ヘヨト

A Wieldy Tool Failures of MP Between NR fragments of ML's

#### Properties of CF fragments

#### • Let $X \in \{T, K4, S4\}$ :

- $\phi \in X^{CF}$  iff  $\Box \phi \in X^{CF}$  (necessitation).
- $\phi \in \mathsf{X}^{CF}$  implies  $\phi[\mathbf{p}/\psi] \in \mathsf{X}^{CF}$  (uniform substitution).
- X<sup>CF</sup> contains:

$$- \bot 
ightarrow p.$$

$$-p \rightarrow (q \rightarrow p)$$

$$-(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

$$-((p \rightarrow q) \rightarrow p) \rightarrow p.$$

$$-\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q).$$

$$-\Box p \rightarrow p$$
 (for T, S4).

$$-\Box p \rightarrow \Box \Box p$$
 (for K4, S4).

- X<sup>CF</sup> contains all axiom instances in X.
  - Applying uniform substitution to the above.

### • $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{CF}$ .

<ロ> (四) (四) (三) (三) (三)

A Wieldy Tool Failures of MP Between NR fragments of ML's

#### Properties of CF fragments

- Let  $X \in \{T, K4, S4\}$ :
  - $\phi \in X^{CF}$  iff  $\Box \phi \in X^{CF}$  (necessitation).
  - $\phi \in X^{CF}$  implies  $\phi[p/\psi] \in X^{CF}$  (uniform substitution).
  - X<sup>CF</sup> contains:

$$- \perp \rightarrow p.$$
  

$$- p \rightarrow (q \rightarrow p).$$
  

$$- (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)).$$
  

$$- ((p \rightarrow q) \rightarrow p) \rightarrow p.$$
  

$$- \Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q).$$
  

$$- \Box p \rightarrow p \qquad (for T S4)$$

- $-\Box p \rightarrow p$  (for T, S4).
- $-\Box p \rightarrow \Box \Box p$  (for K4, S4).
- X<sup>CF</sup> contains all axiom instances in X.
  - Applying uniform substitution to the above.
- $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{CF}$ .

ヘロト ヘアト ヘビト ヘビト

A Wieldy Tool Failures of MP Between NR fragments of ML's

#### Properties of CF fragments

- Let  $X \in \{T, K4, S4\}$ :
  - $\phi \in X^{CF}$  iff  $\Box \phi \in X^{CF}$  (necessitation).
  - $\phi \in X^{CF}$  implies  $\phi[p/\psi] \in X^{CF}$  (uniform substitution).
  - X<sup>CF</sup> contains:

$$\begin{array}{l} -\perp \rightarrow p. \\ -p \rightarrow (q \rightarrow p). \\ -(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)) \\ -((p \rightarrow q) \rightarrow p) \rightarrow p. \\ -\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q). \end{array}$$

- $-\Box p \rightarrow p$  (for T, S4).
- $-\Box p \rightarrow \Box \Box p$  (for K4, S4).
- X<sup>CF</sup> contains all axiom instances in X.
  - Applying uniform substitution to the above.

•  $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{CF}$ 

ヘロン 人間 とくほ とくほ とう

э

A Wieldy Tool Failures of MP Between NR fragments of ML's

#### Properties of CF fragments

- Let  $X \in \{T, K4, S4\}$ :
  - $\phi \in X^{CF}$  iff  $\Box \phi \in X^{CF}$  (necessitation).
  - $\phi \in X^{CF}$  implies  $\phi[p/\psi] \in X^{CF}$  (uniform substitution).
  - X<sup>CF</sup> contains:

$$\begin{array}{l} - \bot \rightarrow p. \\ - p \rightarrow (q \rightarrow p). \\ - (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)). \\ - ((p \rightarrow q) \rightarrow p) \rightarrow p. \\ - \Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q). \end{array}$$

- $-\Box p \rightarrow p$  (for T, S4).
- $-\Box p \rightarrow \Box \Box p$  (for K4, S4).
- X<sup>CF</sup> contains all axiom instances in X.
  - Applying uniform substitution to the above.

• 
$$\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{CF}$$

A Wieldy Tool Failures of MP Between NR fragments of ML's

### Applied to NR fragments

#### • Let $X \in \{T, K4, S4\}$ :

#### • X<sup>NR</sup> contains all axiom instances in X.

– by the fact that  $X^{CF} \subseteq X^{NR}$ .

- X<sup>NR</sup> is closed under necessitation.
  - directly by Artemov's proof of internalization theorem.
- X<sup>NR</sup> is not closed under MP.

- otherwise  $X^{NR} = X$ , contradiction.

• Thus, non-self-referentiality can be abnormal. (Yu 2017)

• IPC<sup>NR</sup> is not closed under MP.

- $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{NR}.$ - by the fact that  $\mathsf{IPC}_{\rightarrow}^{CF} \subseteq \mathsf{IPC}_{\rightarrow}^{NR}.$
- IPC<sup>*NR*</sup> is not closed under *MP*.
  - otherwise IPC $_{\rightarrow}^{NR}$  = IPC $_{\rightarrow}$ , contradiction.
- So is IPC<sup>NR</sup>

A Wieldy Tool Failures of MP Between NR fragments of ML's

### Applied to NR fragments

- Let  $X \in \{T, K4, S4\}$ :
  - X<sup>NR</sup> contains all axiom instances in X.
    - by the fact that  $X^{CF} \subseteq X^{NR}$ .
  - X<sup>NR</sup> is closed under necessitation.
    - directly by Artemov's proof of internalization theorem.
  - X<sup>NR</sup> is not closed under MP.
    - otherwise  $X^{NR} = X$ , contradiction.
- Thus, non-self-referentiality can be abnormal. (Yu 2017)
- IPC<sup>NR</sup> is not closed under MP.
  - $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{NR}$ . - by the fact that  $\mathsf{IPC}_{\rightarrow}^{CF} \subseteq \mathsf{IPC}_{\rightarrow}^{NR}$ .
  - IPC<sup>NR</sup> is not closed under *MP*.
    - otherwise IPC $_{\rightarrow}^{NR}$  = IPC $_{\rightarrow}$ , contradiction.
  - So is IPC<sup>NR</sup>

ヘロト ヘアト ヘビト ヘビト

A Wieldy Tool Failures of MP Between NR fragments of ML's

### Applied to NR fragments

- Let  $X \in \{T, K4, S4\}$ :
  - X<sup>NR</sup> contains all axiom instances in X.
    - by the fact that  $X^{CF} \subseteq X^{NR}$ .
  - X<sup>NR</sup> is closed under necessitation.
    - directly by Artemov's proof of internalization theorem.
  - X<sup>NR</sup> is not closed under MP.
    - otherwise  $X^{NR} = X$ , contradiction.

#### • Thus, non-self-referentiality can be abnormal. (Yu 2017)

- IPC<sup>NR</sup> is not closed under MP.
  - $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}^{NR}_{\rightarrow}.$ - by the fact that  $\mathsf{IPC}^{CF}_{\rightarrow} \subseteq \mathsf{IPC}^{NR}_{\rightarrow}.$
  - IPC<sup>*NR*</sup> is not closed under *MP*.
    - otherwise IPC $_{\rightarrow}^{NR}$  = IPC $_{\rightarrow}$ , contradiction.
  - So is IPC<sup>NR</sup>

ヘロン 人間 とくほ とくほ とう

-

A Wieldy Tool Failures of MP Between NR fragments of ML's

### Applied to NR fragments

- Let  $X \in \{T, K4, S4\}$ :
  - X<sup>NR</sup> contains all axiom instances in X.
    - by the fact that  $X^{CF} \subseteq X^{NR}$ .
  - X<sup>NR</sup> is closed under necessitation.
    - directly by Artemov's proof of internalization theorem.
  - X<sup>NR</sup> is not closed under MP.
    - otherwise  $X^{NR} = X$ , contradiction.
- Thus, non-self-referentiality can be abnormal. (Yu 2017)
- IPC<sup>NR</sup> is not closed under MP.
  - $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{NR}.$ - by the fact that  $\mathsf{IPC}_{\rightarrow}^{CF} \subseteq \mathsf{IPC}_{\rightarrow}^{NR}.$
  - $IPC_{\rightarrow}^{NR}$  is not closed under *MP*.
    - otherwise  $IPC_{\rightarrow}^{NR} = IPC_{\rightarrow}$ , contradiction.
  - So is IPC<sup>NR</sup>

A Wieldy Tool Failures of MP Between NR fragments of ML's

### Applied to NR fragments

- Let  $X \in \{T, K4, S4\}$ :
  - X<sup>NR</sup> contains all axiom instances in X.
    - by the fact that  $X^{CF} \subseteq X^{NR}$ .
  - X<sup>NR</sup> is closed under necessitation.
    - directly by Artemov's proof of internalization theorem.
  - X<sup>NR</sup> is not closed under MP.
    - otherwise  $X^{NR} = X$ , contradiction.
- Thus, non-self-referentiality can be abnormal. (Yu 2017)
- IPC<sup>NR</sup> is not closed under MP.
  - $\alpha \rightarrow (\beta \rightarrow \alpha), (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \in \mathsf{IPC}_{\rightarrow}^{NR}.$ - by the fact that  $\mathsf{IPC}_{\rightarrow}^{CF} \subseteq \mathsf{IPC}_{\rightarrow}^{NR}.$
  - $IPC_{\rightarrow}^{NR}$  is not closed under *MP*.
    - otherwise  $IPC_{\rightarrow}^{\textit{NR}} = IPC_{\rightarrow},$  contradiction.
  - So is IPC<sup>NR</sup>.

(日)

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's

#### • Easy to show are:

- $T^{NR} \subseteq S4^{NR}$  and
- $K4^{NR} \subseteq S4^{NR}$ 
  - though we will not give a proof here...
- Hard to show is:
  - there are no more inclusions!
- Therefore, when going from a smaller ML to a greater ML, non-self-referentiality is not always conservative. (Yu 2017)

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's

#### • Easy to show are:

- $T^{NR} \subseteq S4^{NR}$  and
- $K4^{NR} \subseteq S4^{NR}$ 
  - though we will not give a proof here...
- Hard to show is:
  - there are no more inclusions!
- Therefore, when going from a smaller ML to a greater ML, non-self-referentiality is not always conservative. (Yu 2017)

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's

- Easy to show are:
  - $T^{NR} \subseteq S4^{NR}$  and
  - K4<sup>*NR*</sup> ⊆ S4<sup>*NR*</sup>
    - though we will not give a proof here...
- Hard to show is:
  - there are no more inclusions!
- Therefore, when going from a smaller ML to a greater ML, non-self-referentiality is not always conservative. (Yu 2017)

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (continued)



俞珺华 (Yu, Junhua) Self-referentiality in the framework of justification logics

イロト イポト イヨト イヨト

ъ

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contiinued)



俞珺华 (Yu, Junhua) Self-referentiality in the framework of justification logics

イロト イポト イヨト イヨト

ъ

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contiiinued)



イロト イポト イヨト イヨト

3

Realization in JL A Wi Self-referentiality Failu Properties of *NR* Fragments Betw

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contivnued)



A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contvnued)



Realization in JL A Wieldy Self-referentiality Failures Properties of *NR* Fragments Between

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contvinued)



Realization in JL A Wieldy Tool Self-referentiality Failures of *MP* Properties of *NR* Fragments Between *NR* fragments of ML's

#### Between NR fragments of ML's (contviinued)



Realization in JL A Wieldy Tool Self-referentiality Failures of MP Properties of NR Fragments Between NR fragments of ML's

#### Between NR fragments of ML's (contviiinued)



Realization in JL A Wield Self-referentiality Failures Properties of NR Fragments Betwee

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contixnued)



Realization in JL A Wie Self-referentiality Failure Properties of *NR* Fragments Betwee

A Wieldy Tool Failures of *MP* Between *NR* fragments of ML's

#### Between NR fragments of ML's (contxnued)



P.S.: Not all instances come from Kuznets'  $\kappa$ 's, e.g., let  $\iota = \Diamond \Box p \rightarrow \Diamond \Box \Diamond p$ .

| Realization in JL          | A Wieldy Tool                |
|----------------------------|------------------------------|
| Self-referentiality        | Failures of MP               |
| Properties of NR Fragments | Between NR fragments of ML's |

#### Thanks!

俞珺华 (Yu, Junhua) Self-referentiality in the framework of justification logics

◆□→ ◆□→ ◆三→ ◆三→

き のへで