A Hyper-sequent Calculus for INL

Yu, Junhua

Tsinghua University
2017.04.13 @ Zhejiang University

Outline

- Backgrounds
- Neighborhood semantics \& 'Basic' neighborhood logic NL
- 'Instantial' neighborhood logic INL
- Expressive power \& Axiomatization
- Proof Theory
- Semantic tableau \& Hyper-sequent calculus HSinl
- Soundness, (Cut)-admissibility, \& Completeness
- Lyndon interpolation
- Future directions

Abbreviation: "nbd" means "neighborhood"

Background
Joint work with
Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist

Nbd semantics

- Frame: $\mathfrak{F}=(W, \sigma)$
- $W \neq \varnothing$, a domain;
- $\sigma: W \mapsto 2^{2^{W}}$, a nbd function.
- Model: $\mathfrak{M}=(\mathfrak{F}, V)$
- F. a nbd frame;
- $V: W \mapsto 2^{\mathcal{P}}$, a propositional valuation.
- Remarks:
- Nbd semantics is general
- Specified properties of nbd functions
- each state has a nbd,
- $\{w\}$ is a nbd of $w(r e s p . ~ \varnothing, W, \ldots$),
- each nbd is non-empty,
- each nbd of w contains w,
- each state has exactly 1 nbd,
- nbd is closed under

Nbd semantics

- Frame: $\mathfrak{F}=(W, \sigma)$
- $W \neq \varnothing$, a domain;
- $\sigma: W \mapsto 2^{2^{W}}$, a nbd function.
- Model: $\mathfrak{M}=(\mathfrak{F}, V)$
- \mathfrak{F}, a nbd frame;
- $V: W \mapsto 2^{\mathcal{P}}$, a propositional valuation.
- Remarks:
- Nbd semantics is general
- Specified properties of nbd functions
- each state has a nbd,
- $\{w\}$ is a nbd of w (resp. \varnothing, W, \ldots),
- each nbd is non-empty,
- each nbd of w contains w,
- each state has exactly 1 nbd,
- nbd is closed under

Nbd semantics

- Frame: $\mathfrak{F}=(W, \sigma)$
- $W \neq \varnothing$, a domain;
- $\sigma: W \mapsto 2^{2^{W}}$, a nbd function.
- Model: $\mathfrak{M}=(\mathfrak{F}, V)$
- \mathfrak{F}, a nbd frame;
- $V: W \mapsto 2^{\mathcal{P}}$, a propositional valuation.
- Remarks:
- Nbd semantics is general
- Specified properties of nbd functions
- each state has a nbd,
- $\{w\}$ is a nbd of w (resp. \varnothing, W, \ldots),
- each nbd is non-empty,
- each nbd of w contains w,
- each state has exactly 1 nbd,
- nbd is closed under

Basic nbd logic NL

- Basic modal language: unary operator \square (\diamond as defined).
- Truth definition - $a \exists \forall$ reading of \square :
- $\mathfrak{M}, w \vDash \square \alpha$ iff $(\exists N \in \sigma(w))(\forall n \in N) \mathfrak{M}, n \vDash \alpha$.
- a neighborhood (of the current state) has α true everywhere inside.
- Some schemes of normal K are NOT valid:

- (Nec) $\quad(\vDash \phi) \nRightarrow(\vDash \square \phi)$.

Basic nbd logic NL

- Basic modal language: unary operator \square (\diamond as defined).
- Truth definition - a $\exists \forall$ reading of \square :
- $\mathfrak{M}, \boldsymbol{w} \vDash \square \alpha$ iff $(\exists N \in \sigma(w))(\forall n \in N) \mathfrak{M}, n \vDash \alpha$.
- a neighborhood (of the current state) has α true everywhere inside.
- Some schemes of normal K are NOT valid:

Basic nbd logic NL

- Basic modal language: unary operator \square (\diamond as defined).
- Truth definition - a $\exists \forall$ reading of \square :
- $\mathfrak{M}, \boldsymbol{w} \vDash \square \alpha$ iff $(\exists N \in \sigma(w))(\forall n \in N) \mathfrak{M}, n \vDash \alpha$.
- a neighborhood (of the current state) has α true everywhere inside.
- Some schemes of normal K are NOT valid:
- $\not \models \square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$,
- $\not \models(\square p \wedge \square q) \rightarrow \square(p \wedge q)$,
- (Nec) $\quad(\vDash \phi) \nRightarrow(\vDash \square \phi)$.

Basic nbd logic NL

- Axiomatization:
- (axiom and rule) Schemes of classical propositional calculus.
- Rule scheme RE (rule of replacement)

$$
\frac{\alpha \leftrightarrow \beta \quad \phi}{\phi^{\prime}}
$$

where ϕ^{\prime} is ϕ with an occurrance of α replaced by β

- An $\alpha \wedge \beta$ neighborhood is also an α neighborhood.

Basic nbd logic NL

- Axiomatization:
- (axiom and rule) Schemes of classical propositional calculus.
- Rule scheme RE (rule of replacement)

$$
\frac{\alpha \leftrightarrow \beta \quad \phi}{\phi^{\prime}}
$$

where ϕ^{\prime} is ϕ with an occurrance of α replaced by β

- $\square(\alpha \wedge \beta) \rightarrow \square \alpha \wedge \square \beta$.
- An $\alpha \wedge \beta$ neighborhood is also an α neighborhood.

Instantial nbd logic INL

- Same frames/models with an "instantial" language:
- Operator (with any positive finite arity) $\square\left(\alpha_{i}, \ldots, \alpha_{j} ; \alpha_{0}\right)$.
- Truth definition - a " $\exists(\exists, \ldots, \exists ; \forall)$ " reading of \square :
- $\mathfrak{M}, \boldsymbol{w} \vDash \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ iff

- a neighborhood (of the current state) has
- α_{0} true evervwhere inside and
- α_{i} true somewhere inside (resp. for each $i \in\{1, \ldots, j\}$).

Instantial nbd logic INL

- Same frames/models with an "instantial" language:
- Operator (with any positive finite arity) $\square\left(\alpha_{i}, \ldots, \alpha_{j} ; \alpha_{0}\right)$.
- Truth definition - a " $\exists(\exists, \ldots, \exists ; \forall)$ " reading of \square :
- $\mathfrak{M}, \boldsymbol{w} \vDash \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ iff

$$
(\exists N \in \sigma(w))\left\{\begin{array}{l}
(\forall n \in N) \mathfrak{M}, n \vDash \alpha_{0} \\
\left(\exists n_{1} \in N\right) \mathfrak{M}, n_{1} \vDash \alpha_{1} \\
\vdots \\
\left(\exists n_{j} \in N\right) \mathfrak{M}, n_{j} \vDash \alpha_{j}
\end{array}\right.
$$

- a neighborhood (of the current state) has
- α_{0} true everywhere inside, and
- α_{i} true somewhere inside (resp. for each $i \in\{1, \ldots, j\}$).

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- $\not \models \square(; T) \quad$ (a state can have no neighborhoods).
- $\not \models \square(\alpha ; \psi) \wedge \square(\beta ; \psi) \rightarrow \square(\alpha . \beta ; \psi)$
(neighborhoods given by premises may be distinct).
- Also, there are valid schemes.
- An axiomatization later.

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- cf. a validity: $\vDash \neg \square(\alpha ; \perp)$.
- $\nmid=\square(; \top)$ (a state can have no neighborhoods).
- $\not \models \square \square(\alpha ; \psi) \wedge \square(\beta ; \psi) \rightarrow \square(\alpha, \beta ; \psi)$
(neighborhoods given by premises may be distinct).
- Also, there are valid schemes.
- An axiomatization later.

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- cf. a validity: $\vDash \neg \square(\alpha ; \perp)$.
- $\not \models \square(; \top) \quad$ (a state can have no neighborhoods).
(neighborhoods given by premises may be distinct).
- Also, here are valid schemes.
- An axiomatization later.

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- cf. a validity: $\vDash \neg \square(\alpha ; \perp)$.
- $\not \models \square(; \top) \quad$ (a state can have no neighborhoods).
- $\not \models \square \square(\alpha ; \psi) \wedge \square(\beta ; \psi) \rightarrow \square(\alpha, \beta ; \psi)$
(neighborhoods given by premises may be distinct).
- Also, there are valid schemes.
- An axiomatization later.

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- cf. a validity: $\vDash \neg \square(\alpha ; \perp)$.
- $\not \models \square(; \top) \quad$ (a state can have no neighborhoods).
- $\not \models \square \square(\alpha ; \psi) \wedge \square(\beta ; \psi) \rightarrow \square(\alpha, \beta ; \psi)$ (neighborhoods given by premises may be distinct).
- Also, there are valid schemes.
- An axiomatization later.

Instantial nbd logic INL

- Some invalid schemes:
- $\not \models \neg \square(; \perp) \quad$ (empty neighborhoods are permitted)
- cf. a validity: $\vDash \neg \square(\alpha ; \perp)$.
- $\not \models \square(; \top) \quad$ (a state can have no neighborhoods).
- $\not \models \square \square(\alpha ; \psi) \wedge \square(\beta ; \psi) \rightarrow \square(\alpha, \beta ; \psi)$ (neighborhoods given by premises may be distinct).
- Also, there are valid schemes.
- An axiomatization later.
- Reducible to NL? NO.

INL - expressive power

- $\square \phi$ in the basic language can be written as $\square(; \phi)$.
- Let $n=0$ in $\square\left(\phi_{1}, \ldots, \phi_{n} ; \phi\right)$.
- Expressive power of the new language is not weaker than the basic language.
- The new language is

strictly more expressive

than the basic one.

- So axiomatization of INL is not trivial.

INL - expressive power

- $\square \phi$ in the basic language can be written as $\square(; \phi)$.
- Let $n=0$ in $\square\left(\phi_{1}, \ldots, \phi_{n} ; \phi\right)$.
- Expressive power of the new language is not weaker than the basic language.
- The new language is

strictly more expressive

than the basic one.

- So axiomatization of INL is not trivial.

INL - expressive power

- (Basic bisimulation test): - if $w \rightleftharpoons w^{\prime}$, i.e.:
- $V(w)=V^{\prime}\left(w^{\prime}\right)$,
- $\forall N \in \sigma(w) . \exists N^{\prime} \in \sigma\left(w^{\prime}\right) . \forall n^{\prime} \in N^{\prime} . \exists n \in N .\left(n \rightleftharpoons n^{\prime}\right)$,
- $\forall N^{\prime} \in \sigma\left(w^{\prime}\right) . \exists N \in \sigma(w) . \forall n \in N . \exists n^{\prime} \in N^{\prime} .\left(n \rightleftharpoons n^{\prime}\right)$;
then w and w^{\prime} agree on all formulas in the basic language.
- No longer capable in the instantialbe setting:

INL - expressive power

- (Basic bisimulation test): - if $w \rightleftharpoons w^{\prime}$, i.e.:
- $V(w)=V^{\prime}\left(w^{\prime}\right)$,
- $\forall N \in \sigma(w) . \exists N^{\prime} \in \sigma\left(w^{\prime}\right) . \forall n^{\prime} \in N^{\prime} . \exists n \in N .\left(n \rightleftharpoons n^{\prime}\right)$,
- $\forall N^{\prime} \in \sigma\left(w^{\prime}\right) . \exists N \in \sigma(w) . \forall n \in N . \exists n^{\prime} \in N^{\prime} .\left(n \rightleftharpoons n^{\prime}\right)$;
then w and w^{\prime} agree on all formulas in the basic language.
- No longer capable in the instantialbe setting:

INL - expressive power

- (Basic bisimulation test): - if $w \rightleftharpoons w^{\prime}$, i.e.:
- $V(w)=V^{\prime}\left(w^{\prime}\right)$,
- $\forall N \in \sigma(w) . \exists N^{\prime} \in \sigma\left(w^{\prime}\right) . \forall n^{\prime} \in N^{\prime} . \exists n \in N .\left(n \rightleftharpoons n^{\prime}\right)$,
- $\forall N^{\prime} \in \sigma\left(w^{\prime}\right) . \exists N \in \sigma(w) . \forall n \in N . \exists n^{\prime} \in N^{\prime} .\left(n \rightleftharpoons n^{\prime}\right)$;
then w and w^{\prime} agree on all formulas in the basic language.
- No longer capable in the instantialbe setting:

$$
\begin{aligned}
& 0^{\prime} \not \models \square(\neg p ; \top) \\
& \downarrow \\
& 1^{\prime} \vDash p
\end{aligned}
$$

INL - expressive power

- B.t.w., an instantial bisimulation should should take care of both directions:
- $V(w)=V^{\prime}\left(w^{\prime}\right)$,
- if $\forall N \in \sigma(w) . \exists N^{\prime} \in \sigma\left(w^{\prime}\right)$.
$\left[\left[\forall n^{\prime} \in N^{\prime} . \exists n \in N .\left(n \rightleftarrows n^{\prime}\right)\right] \&\left[\forall n \in N . \exists n^{\prime} \in N^{\prime} .\left(n \rightleftarrows n^{\prime}\right)\right]\right]$,
- if $\forall N^{\prime} \in \sigma\left(w^{\prime}\right) . \exists N \in \sigma(w)$.
$\left.\left[\forall \forall \in N . \exists n^{\prime} \in N^{\prime} .\left(n \rightleftarrows n^{\prime}\right)\right] \&\left[\forall n^{\prime} \in N^{\prime} . \exists n \in N .\left(n \rightleftarrows n^{\prime}\right)\right]\right]$.

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:
- Inst:

- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case:
- Weak
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)
$$

- Inst:

- Norm:

- Case
- Weak
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:
$\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)$
- Inst:
$\square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta \wedge \alpha_{0} ; \alpha_{0}\right)$
- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case
- Weak
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)
$$

- Inst:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta \wedge \alpha_{0} ; \alpha_{0}\right)
$$

- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case
- Weak
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:
where $i \in\{1, \ldots, j\}$

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)
$$

- Inst:
$\square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta \wedge \alpha_{0} ; \alpha_{0}\right)$
- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case:
$\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow\left(\square\left(\alpha_{1}, \ldots, \alpha_{j}, \delta ; \alpha_{0}\right) \vee \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \wedge \neg \delta\right)\right)$
- Weak:
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:
$\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \alpha_{i} ; \alpha_{0}\right) \quad$ where $i \in\{1, \ldots, j\}$

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)
$$

- Inst:
$\square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta \wedge \alpha_{0} ; \alpha_{0}\right)$
- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case:
$\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow\left(\square\left(\alpha_{1}, \ldots, \alpha_{j}, \delta ; \alpha_{0}\right) \vee \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \wedge \neg \delta\right)\right)$
- Weak:
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:
where $i \in\{1, \ldots, j\}$

INL - axiomatization

- Classical propositional logic with rule scheme RE;
- Additional schemes:
- R-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \vee \eta\right)
$$

- L-mon:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi \vee \psi ; \alpha_{0}\right)
$$

- Inst:

$$
\square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \eta \wedge \alpha_{0} ; \alpha_{0}\right)
$$

- Norm:
$\neg \square\left(\alpha_{1}, \ldots, \alpha_{j}, \perp ; \alpha_{0}\right)$
- Case:
$\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow\left(\square\left(\alpha_{1}, \ldots, \alpha_{j}, \delta ; \alpha_{0}\right) \vee \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0} \wedge \neg \delta\right)\right)$
- Weak:
$\square\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{2}, \ldots, \alpha_{j} ; \alpha_{0}\right)$
- Dupl:
$\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \alpha_{i} ; \alpha_{0}\right) \quad$ where $i \in\{1, \ldots, j\}$

INL - axiomatization

- Some Derivable Schemes:
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma, \delta, \beta_{1}, \ldots, \beta_{j} ; \psi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{i}, \delta, \gamma, \beta_{1}, \ldots, \beta_{j} ; \psi\right)$
- Together with Weak and Dupl, we can read 'instance-formulas' as a finite set.
- Not valid when $j=0$.

INL - axiomatization

- Some Derivable Schemes:
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma, \delta, \beta_{1}, \ldots, \beta_{j} ; \psi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{i}, \delta, \gamma, \beta_{1}, \ldots, \beta_{j} ; \psi\right)$
- Together with Weak and Dupl, we can read 'instance-formulas' as a finite set.
- Not valid when $j=0$.

INL - axiomatization

- Some Derivable Schemes:
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma, \delta, \beta_{1}, \ldots, \beta_{j} ; \psi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{i}, \delta, \gamma, \beta_{1}, \ldots, \beta_{j} ; \psi\right)$
- Together with Weak and Dupl, we can read 'instance-formulas' as a finite set.
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \top ; \alpha_{0}\right)$, when $j>0$
- Not valid when $j=0$.

INL - axiomatization

- Some Derivable Schemes:
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma, \delta, \beta_{1}, \ldots, \beta_{j} ; \psi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{i}, \delta, \gamma, \beta_{1}, \ldots, \beta_{j} ; \psi\right)$
- Together with Weak and Dupl, we can read 'instance-formulas' as a finite set.
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \top ; \alpha_{0}\right)$, when $j>0$
- Not valid when $j=0$.
- $\frac{\phi \rightarrow \psi}{\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \phi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \psi\right)}$
- R - mon as a rule scheme.

- L - mon as a rule scheme.

INL - axiomatization

- Some Derivable Schemes:
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma, \delta, \beta_{1}, \ldots, \beta_{j} ; \psi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{i}, \delta, \gamma, \beta_{1}, \ldots, \beta_{j} ; \psi\right)$
- Together with Weak and Dupl, we can read 'instance-formulas' as a finite set.
$\bullet \vdash \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \top ; \alpha_{0}\right)$, when $j>0$
- Not valid when $j=0$.
- $\frac{\phi \rightarrow \psi}{\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \phi\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \psi\right)}$
- R - mon as a rule scheme.
- $\frac{\phi \rightarrow \psi}{\square\left(\alpha_{1}, \ldots, \alpha_{j}, \phi ; \alpha_{0}\right) \rightarrow \square\left(\alpha_{1}, \ldots, \alpha_{j}, \psi ; \alpha_{0}\right)}$
- L - mon as a rule scheme.

Complexity

- Satisfiability problem of INL is PSPACE-complete.
- Faithful embeddings $\mathrm{K} \hookrightarrow \mathrm{INL} \hookrightarrow \mathrm{K} \oplus \mathrm{K}$;
- Both K and $\mathrm{K} \oplus \mathrm{K}$ are PSPACE-complete.

Proof Theory

Semantic tableau

- General idea of semantic tableau
- In order to prove ϕ, start with the goal of satisfying $\neg \phi$
- Reduce goals to subgoals (usually on subformulas)
- Rules
- Impossible goals are "closed", otherwise "open"
- Impossible - have \perp or 'both α and $\neg \alpha$ '
- "Open" tableaus provide hints to counter-models (of ϕ) - "Closed" tableaus are defined as proofs (of ϕ).
- Rules for classical propositional logic means branching

Semantic tableau

- General idea of semantic tableau
- In order to prove ϕ, start with the goal of satisfying $\neg \phi$
- Reduce goals to subgoals (usually on subformulas)
- Rules
- Impossible goals are "closed", otherwise "open"
- Impossible - have \perp or 'both α and $\neg \alpha$ ';
- "Open" tableaus provide hints to counter-models (of ϕ);
- "Closed" tableaus are defined as proofs (of ϕ).
- Rules for classical propositional logic
means branching

Semantic tableau

- General idea of semantic tableau
- In order to prove ϕ, start with the goal of satisfying $\neg \phi$
- Reduce goals to subgoals (usually on subformulas)
- Rules
- Impossible goals are "closed", otherwise "open"
- Impossible - have \perp or 'both α and $\neg \alpha$ ';
- "Open" tableaus provide hints to counter-models (of ϕ);
- "Closed" tableaus are defined as proofs (of ϕ).
- Rules for classical propositional logic
||...|| means branching

$$
\begin{array}{ccccccc}
\neg \neg \phi \\
\phi & \frac{\alpha \wedge \beta}{\alpha} & \frac{\neg(\alpha \vee \beta)}{\neg \alpha} & \frac{\neg(\alpha \rightarrow \beta)}{\alpha} & \frac{\neg(\alpha \wedge \beta)}{\|\neg \alpha\| \neg \beta \|} & \frac{\alpha \vee \beta}{\|\alpha\| \beta \|} & \frac{\alpha \rightarrow \beta}{\|\neg \alpha\| \beta \|} \\
\beta & \neg \beta & \neg \beta & &
\end{array}
$$

Semantic tableau

- INL needs (at least) a modal rule.
- A \square-formula requires a nbd (with certain properties); A $\neg \square$-formula refutes any nbd (with certain properties).
- \square 's do not work together to close a goal;
they each does, together with all $\neg \square$'s in the same goal.
- The rule takes from a goal:
- one \square-formula, and
- and any number of $\neg \square$-formulas
(with variant numbers of instances)

Semantic tableau

- INL needs (at least) a modal rule.
- A \square-formula requires a nbd (with certain properties); A $\neg \square$-formula refutes any nbd (with certain properties).
- \square 's do not work together to close a goal; they each does, together with all $\neg \square$'s in the same goal.
- The rule takes from a goal:
- one \square-formula, and
- and any number of $\neg \square$-formulas
(with variant numbers of instances)

Semantic tableau

- INL needs (at least) a modal rule.
- A \square-formula requires a nbd (with certain properties); A $\neg \square$-formula refutes any nbd (with certain properties).
- \square 's do not work together to close a goal; they each does, together with all $\neg \square$'s in the same goal.
- The rule takes from a goal:
- one \square-formula, and
- and any number of $\neg \square$-formulas
(with variant numbers of instances):

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{1}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

Semantic tableau

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{j}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$\mid \alpha_{0} \wedge \sigma$

$$
\left.\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j}}
$$

- $\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ requires a nbd with (generally) j states.

Each nbd is consistent, if all its states are.

- $\forall i \in\{1, \ldots, k\}, \neg \square\left(\beta_{1}^{i}, \ldots, \beta_{j i}^{i} ; \beta_{0}^{i}\right)$ requires that
either - β_{0}^{i} fails at some state,
or - β_{h}^{i} fails at each state for some $h \in\left\{1, \ldots, j_{i}\right\}$.
- $\prod_{z=1}^{k}\left(j_{z}+1\right)$ options in total.

Index possible nbd's by the option it takes, e.g.,

Semantic tableau

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{j}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$\mid \alpha_{0} \wedge \sigma$

$$
\left.\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{i}\right\}}
$$

- $\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ requires a nbd with (generally) j states.

Each nbd is consistent, if all its states are.

- $\forall i \in\{1, \ldots, k\}, \neg \square\left(\beta_{1}^{i}, \ldots, \beta_{j_{i}}^{i} ; \beta_{0}^{i}\right)$ requires that either - β_{0}^{i} fails at some state,
or $-\beta_{h}^{i}$ fails at each state for some $h \in\{1, \ldots, j\}$.
- $\prod_{z=1}^{k}\left(j_{z}+1\right)$ options in total.

Index possible nbd's by the option it takes, e.g., $\left\langle/\binom{1}{\right.$\hline} ,

Semantic tableau

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{1}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$\mid \alpha_{0} \wedge \sigma \wedge$
$\left.\neg \beta^{i}\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{i}\right\}}$

- $\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ requires a nbd with (generally) j states.

Each nbd is consistent, if all its states are.

- $\forall i \in\{1, \ldots, k\}, \neg \square\left(\beta_{1}^{i}, \ldots, \beta_{j_{i}}^{i} ; \beta_{0}^{i}\right)$ requires that either - β_{0}^{i} fails at some state, or $-\beta_{h}^{i}$ fails at each state for some $h \in\left\{1, \ldots, j_{i}\right\}$.
- $\prod_{z=1}^{k}\left(j_{z}+1\right)$ options in total.

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{j}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$$
\left|\alpha_{0} \wedge \sigma \wedge \bigwedge_{i \in\{1, \ldots, k\}}^{l(i) \neq 0} \neg \beta_{I(i)}^{i}\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{y}\right\}_{y \in\{1, \ldots, k\}}^{(y)=0}}\| \|_{I \in \bigotimes_{z=1}^{k}\left\{0, \ldots, j_{z}\right\}}
$$

- $\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right)$ requires a nbd with (generally) j states.

Each nbd is consistent, if all its states are.

- $\forall i \in\{1, \ldots, k\}, \neg \square\left(\beta_{1}^{i}, \ldots, \beta_{j_{i}}^{i} ; \beta_{0}^{i}\right)$ requires that either - β_{0}^{i} fails at some state, or $-\beta_{h}^{i}$ fails at each state for some $h \in\left\{1, \ldots, j_{i}\right\}$.
- $\prod_{z=1}^{k}\left(j_{z}+1\right)$ options in total.

Index possible nbd's by the option it takes, e.g., $\langle I(1), \ldots, I(k)\rangle$.

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg \square\left(\beta_{1}^{1}, \ldots, \beta_{j 1}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}^{k} ;}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$$
\left|\alpha_{0} \wedge \sigma \wedge \bigwedge_{i \in\{1, \ldots, k\}}^{\prime(i) \neq 0} \neg \beta_{l(i)}^{i}\right|_{\left.\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{y}\right\}_{y \in\{1, \ldots, k\}}^{(l)=0}\right|_{l \in \otimes_{z=1}^{k}\{0, \ldots, j\}}}
$$

- It is $\prod_{z=1}^{k}\left(j_{z}+1\right)$-branching

In order to close a tableau, each branch has to be closed.
Branch correspond to neighborhoods of the current state.

- Each branch offers a hyper-node

A collection of regular nodes (labeled by formulas).
To close a branch, it is enough to close one node in the hyper-node.
Nodes correspond to states in the neighborhood.

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{1}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$$
\left|\alpha_{0} \wedge \sigma \wedge \bigwedge_{i \in\{1, \ldots, k\}}^{l(i) \neq 0} \neg \beta_{l(i)}^{i}\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{ソ}\right\}_{y \in\{1, \ldots, k\}}^{\prime(y)=0} \mid} \|_{I \in \bigotimes_{z=1}^{k}\left\{0, \ldots, j_{z}\right\}}
$$

- It is $\prod_{z=1}^{k}\left(j_{z}+1\right)$-branching

In order to close a tableau, each branch has to be closed.
Branch correspond to neighborhoods of the current state.

- Each branch offers a hyper-node

A collection of regular nodes (labeled by formulas).
To close a branch, it is enough to close one node in the hyper-node.
Nodes correspond to states in the neighborhood.

Semantic tableau

$$
\begin{gathered}
\square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \\
\neg\left(\beta_{1}^{1}, \ldots, \beta_{j_{1}}^{1} ; \beta_{0}^{1}\right) \\
\vdots \\
\neg \square\left(\beta_{1}^{k}, \ldots, \beta_{j_{k}}^{k} ; \beta_{0}^{k}\right)
\end{gathered}
$$

$\left|\alpha_{0} \wedge \sigma \wedge \bigwedge_{i \in\{1, \ldots, k\}}^{l(i) \neq 0} \neg \beta_{l(i)}^{i}\right|_{\sigma \in\left\{\alpha_{x}\right\}_{x=1}^{j} \cup\left\{\neg \beta_{0}^{y}\right\}_{y \in\{1, \ldots, k\}}^{\prime(y)=0}} \|\left.\right|_{I \in \bigotimes_{z=1}^{k}\left\{0, \ldots, j_{z}\right\}}$

- It is destructive

Formulas (used or not) above the line cannot be used any longer (on this branch) to trigger a rule or to close a branch.

- An example $\vdash \square(\phi \vee \chi ; \theta) \rightarrow \square(\phi ; \theta) \vee \square(\chi ; \theta)$

Semantic tableau

- Call the above mentioned tableau system TABinl
- TABinl is sound and complete
- The direct proof of completeness requires an extraction of counter-model out of a 'systematical-yet-failed' implement of rules, and hence is ugly
- TABinl offers a decision procedure
- TABinl indicates a way to some real proof-theory - a hyper sequent calculus

Semantic tableau

- Call the above mentioned tableau system TABinl
- TABinl is sound and complete
- The direct proof of completeness requires an extraction of counter-model out of a 'systematical-yet-failed' implement of rules, and hence is ugly
- TABinl offers a decision procedure
- TABinl indicates a way to some real proof-theory - a hyper sequent calculus

Semantic tableau

- Call the above mentioned tableau system TABinl
- TABinl is sound and complete
- The direct proof of completeness requires an extraction of counter-model out of a 'systematical-yet-failed' implement of rules, and hence is ugly
- TABinl offers a decision procedure
- TABinl indicates a way to some real proof-theory
- a hyper sequent calculus

Hyper-sequent calculus HSinl

- Primitive connectives: $\{\perp, \rightarrow, \square\}$ (classical)
- Multi-set-based, G3-style
- No Exchange
- Built-in Weakening and Contraction
- Easier proofs of (Cut)-admissibility
- Hyper-sequent
- $\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$ - finite multi-set of regular sequents 'standing for' $\bigvee_{i=1}^{n}\left(\left(\bigwedge \Gamma_{i}\right) \rightarrow\left(\bigvee \Delta_{i}\right)\right)$
- Intuitive correspondence
- regular sequents \sim states
- hyper-sequents ~ nbd's
- sufficient to prove (close) one sequent (state) in
- Primitive connectives: $\{\perp, \rightarrow, \square\}$ (classical)
- Multi-set-based, G3-style
- No Exchange
- Built-in Weakening and Contraction
- Easier proofs of (Cut)-admissibility
- Hyper-sequent
- $\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$ - finite multi-set of regular sequents

- Intuitive correspondence
- regular sequents \sim states
- hyper-sequents ~ nbd's
sufficient to prove (close) one sequent (state) in
- Primitive connectives: $\{\perp, \rightarrow, \square\}$ (classical)
- Multi-set-based, G3-style
- No Exchange
- Built-in Weakening and Contraction
- Easier proofs of (Cut)-admissibility
- Hyper-sequent
- $\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$ - finite multi-set of regular sequents 'standing for' $\bigvee_{i=1}^{n}\left(\left(\bigwedge \Gamma_{i}\right) \rightarrow\left(\bigvee \Delta_{i}\right)\right)$
- Two groups of (admissible) structural rules
(internal \& external) (Weakening \& Contraction)
no Exchange
- Intuitive correspondence
- regular sequents \sim states
- hyper-sequents \sim nbd's
sufficient to prove (close) one sequent (state) in
- Primitive connectives: $\{\perp, \rightarrow, \square\}$ (classical)
- Multi-set-based, G3-style
- No Exchange
- Built-in Weakening and Contraction
- Easier proofs of (Cut)-admissibility
- Hyper-sequent
- $\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$ - finite multi-set of regular sequents 'standing for' $\bigvee_{i=1}^{n}\left(\left(\bigwedge \Gamma_{i}\right) \rightarrow\left(\bigvee \Delta_{i}\right)\right)$
- Two groups of (admissible) structural rules (internal \& external) (Weakening \& Contraction) no Exchange
- Intuitive correspondence
- regular sequents \sim states
- hyper-sequents \sim nbd's
- sufficient to prove (close) one sequent (state) in

Hyper-sequent calculus HSinl

- Primitive connectives: $\{\perp, \rightarrow, \square\}$ (classical)
- Multi-set-based, G3-style
- No Exchange
- Built-in Weakening and Contraction
- Easier proofs of (Cut)-admissibility
- Hyper-sequent
- $\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$ - finite multi-set of regular sequents 'standing for' $\bigvee_{i=1}^{n}\left(\left(\bigwedge \Gamma_{i}\right) \rightarrow\left(\bigvee \Delta_{i}\right)\right)$
- Two groups of (admissible) structural rules (internal \& external) (Weakening \& Contraction) no Exchange
- Intuitive correspondence
- regular sequents \sim states
- hyper-sequents \sim nbd's
- sufficient to prove (close) one sequent (state) in

Hyper-sequent calculus HSinl

- $\overline{G \mid \Pi, p \Rightarrow p, \Sigma}(A x)$ and $\overline{G \mid \Pi, \perp \Rightarrow \Sigma^{(}}(L \perp)$
G : meta-variable for sequent multi-sets (hyper-sequents)

Hyper-sequent calculus HSinl

- $\overline{G \mid \Pi, p \Rightarrow p, \Sigma}(A x)$ and $\overline{G \mid \Pi, \perp \Rightarrow \Sigma^{(}}(L \perp)$
G : meta-variable for sequent multi-sets (hyper-sequents)
- $\frac{G \mid \Pi, \alpha \Rightarrow \beta, \Sigma}{G \mid \Pi \Rightarrow \alpha \rightarrow \beta, \Sigma}(R \rightarrow)$
- $\frac{[G \mid \Pi \Rightarrow \alpha, \Sigma][G \mid \Pi, \beta \Rightarrow \Sigma]}{G \mid \Pi, \alpha \rightarrow \beta \Rightarrow \Sigma}(L \rightarrow)$
[...] stands for branches

- $\overline{G \mid \Pi, p \Rightarrow p, \Sigma}(A x)$ and $\overline{G \mid \Pi, \perp \Rightarrow \Sigma^{(}}(L \perp)$

G: meta-variable for sequent multi-sets (hyper-sequents)

- $\frac{G \mid \Pi, \alpha \Rightarrow \beta, \Sigma}{\mathcal{G} \mid \Pi \Rightarrow \alpha \rightarrow \beta, \Sigma}(R \rightarrow)$
- $\frac{[G \mid \Pi \Rightarrow \alpha, \Sigma][G \mid \Pi, \beta \Rightarrow \Sigma]}{G \mid \Pi, \alpha \rightarrow \beta \Rightarrow \Sigma}(L \rightarrow)$
[...] stands for branches

$$
\frac{\left[\begin{array}{c}
\left|\alpha_{0}, \alpha_{x} \Rightarrow\left\{\beta_{l(i)}^{i}\right\}_{i \in\{1, \ldots, k\}}^{l(i) \neq 0}\right|_{x \in\{1, \ldots, j\}} \\
\left|\alpha_{0} \Rightarrow \beta_{0}^{y},\left\{\beta_{l(i)}^{i}\right\}_{i \in\{1, \ldots, k\}}^{l(i) \neq 0}\right|_{y \in\{1, \ldots, k\}}^{l(y)=0}
\end{array}\right]_{l \in \bigotimes_{i=1}^{k}\left\{0,1, \ldots, j_{i}\right\}}(\square)}{G \mid \Pi, \square\left(\alpha_{1}, \ldots, \alpha_{j} ; \alpha_{0}\right) \Rightarrow\left\{\square\left(\beta_{1}^{i}, \ldots, \beta_{j_{i}}^{i}\right)\right\}_{i=1}^{k}, \Sigma}
$$

Hyper-sequent calculus HSinl

- HSinl is sound.
- If $\mathrm{HSinl} \vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then $\mathrm{INL} \vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- HSinl is complete.
- If INL $\vdash \phi$, then HS Sinl $\vdash \Rightarrow \phi$.
- HSinl is sound.
- If HSinl $\vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then INL $\vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- If INL $\vdash \phi$, then $\mathrm{HSinl} \vdash \Rightarrow \phi$.
- HSinl is sound.
- If $\mathrm{HSinl} \vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then INL $\vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- HSinl is complete.
- If INL $\vdash \phi$, then $\mathrm{HSinl} \vdash \Rightarrow \phi$.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ includes all axioms of INL.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ is closed under MP
- A corollary of (Cut)-admissibility.
- $\{\phi \mid$ HSinl $\vdash \Rightarrow \phi\}$ is closed under RE.
- HSinl is sound.
- If HSinl $\vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then INL $\vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- HSinl is complete.
- If INL $\vdash \phi$, then $\mathrm{HSinl} \vdash \Rightarrow \phi$.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ includes all axioms of INL.
- A corollary of (Cut)-admissibility.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ is closed under RE.
- HSinl is sound.
- If HSinl $\vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then INL $\vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- HSinl is complete.
- If INL $\vdash \phi$, then $\mathrm{HSinl} \vdash \Rightarrow \phi$.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ includes all axioms of INL.
- $\{\phi \mid$ HSinl $\vdash \Rightarrow \phi\}$ is closed under MP
- A corollary of (Cut)-admissibility.
- HSinl is sound.
- If HSinl $\vdash\left|\Gamma_{1} \Rightarrow \Delta_{1}\right| \ldots\left|\Gamma_{n} \Rightarrow \Delta_{n}\right|$, then INL $\vdash \bigvee_{i=1}^{n}\left(\bigwedge \Gamma_{i} \rightarrow \bigvee \Delta_{i}\right)$.
- Proved by an induction.
- For the (\square) rule, a sub-induction gives a stronger form of what we need.
- HSinl is complete.
- If INL $\vdash \phi$, then $\mathrm{HSinl} \vdash \Rightarrow \phi$.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ includes all axioms of INL.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ is closed under MP
- A corollary of (Cut)-admissibility.
- $\{\phi \mid \mathrm{HSinl} \vdash \Rightarrow \phi\}$ is closed under $R E$.
- Admissibility of (Cut) (no matter (Cut+) or (Cut $\left.{ }_{*}\right)$)
- In HSinl resp. "HSinl $\oplus\left(\mathrm{Cut}_{+}\right)$of a certain 'degree'
- Internal/External Weakening is d.p.a.
(depth-preserved admissible).
Actually, in each provable hyper-sequent there is a provable sequent.
- For each formula α, (hyper-)sequent $\alpha \Rightarrow \alpha$ is provable.
- Based on HSinl,
rules (Cut+) and (Cut.) (at any same 'degree') are
inter-derivable.
- Then, a standard double-induction works.
- Subformula property of HSinl as a corollary.
- Admissibility of (Cut) (no matter (Cut+) or (Cut ${ }_{\star}$))
- In HSinl resp. "HSinl $\oplus\left(\right.$ Cut $\left._{+}\right)$of a certain 'degree' ":
- Internal/External Weakening is d.p.a. (depth-preserved admissible).
Actually, in each provable hyper-sequent there is a provable sequent.
- For each formula α, (hyper-)sequent $\alpha \Rightarrow \alpha$ is provable.
- External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used
when showing that of Internal Contraction
- Based on HSinl,
rules $\left(\right.$ Cut $\left._{+}\right)$and (Cut ${ }_{\star}$) (at any same 'degree') are
inter-derivable.
- Then, a standard double-induction works.
- Subformula property of HSinl as a corollary.
- Admissibility of (Cut) (no matter (Cut $)$ or (Cut $\left.t_{\times}\right)$)
- In HSinl resp. "HSinl $\oplus\left(\right.$ Cut $\left._{+}\right)$of a certain 'degree' ":
- Internal/External Weakening is d.p.a. (depth-preserved admissible). Actually, in each provable hyper-sequent there is a provable sequent.
- For each formula α, (hyper-)sequent $\alpha \Rightarrow \alpha$ is provable.
- External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used when showing that of Internal Contraction.
- Based on HSinl,
rules $\left(\right.$ Cut $\left._{+}\right)$and (Cut t_{\times}) (at any same 'degree') are
inter-derivable.
- Then, a standard double-induction works.
- Subformula property of HSinl as a corollary.
- Admissibility of (Cut) (no matter (Cut $)$ or (Cut $\left.)_{\times}\right)$)
- In HSinl resp. "HSinl $\oplus\left(\right.$ Cut $\left._{+}\right)$of a certain 'degree' ":
- Internal/External Weakening is d.p.a. (depth-preserved admissible). Actually, in each provable hyper-sequent there is a provable sequent.
- For each formula α, (hyper-)sequent $\alpha \Rightarrow \alpha$ is provable.
- External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used when showing that of Internal Contraction.
- Based on HSinl, rules (Cut_{+}) and (Cut_{\times}) (at any same 'degree') are inter-derivable.
- Then, a standard double-induction works.
- Subformula property of HSinl as a corollary.
- Admissibility of (Cut) (no matter (Cut $)$ or (Cut $\left.{ }_{x}\right)$)
- In HSinl resp. "HSinl $\oplus\left(\right.$ Cut $\left._{+}\right)$of a certain 'degree' ":
- Internal/External Weakening is d.p.a. (depth-preserved admissible). Actually, in each provable hyper-sequent there is a provable sequent.
- For each formula α, (hyper-)sequent $\alpha \Rightarrow \alpha$ is provable.
- External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used when showing that of Internal Contraction.
- Based on HSinl, rules $\left(\mathrm{Cut}_{+}\right)$and ($\mathrm{Cu} t_{\times}$) (at any same 'degree') are inter-derivable.
- Then, a standard double-induction works.
- Subformula property of HSinl as a corollary.

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α) If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:

(a 'polar generalization’ of Craig interpolation)
- A general form

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

- Employ a 'splitting version' of HSinl

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α) If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
(a 'polar generalization’ of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

- Employ a 'splitting version' of HSinl

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α) If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
- INL $\vdash \phi \rightarrow \epsilon \quad$ and \quad INL $\vdash \epsilon \rightarrow \psi$.
(a 'polar generalization' of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula \in s.t.:

- Employ a 'splitting version' of HSinl

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α)
If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
- INL $\vdash \phi \rightarrow \epsilon \quad$ and \quad INL $\vdash \epsilon \rightarrow \psi$.
(a 'polar generalization' of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α)
If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
- INL $\vdash \phi \rightarrow \epsilon \quad$ and \quad INL $\vdash \epsilon \rightarrow \psi$.
(a 'polar generalization' of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

- $\mathcal{V}^{ \pm}(\epsilon) \subseteq\left(\mathcal{V}^{\mp}\left(\Pi_{R}, \Sigma_{L}\right)\right) \cap\left(\mathcal{V}^{ \pm}\left(\Pi_{L}, \Sigma_{R}\right)\right)$
- $\mathrm{HSinl} \vdash \Pi_{L} \Rightarrow \Sigma_{L}, \epsilon \quad$ and $\mathrm{HSinl} \vdash \epsilon, \Pi_{R} \rightarrow \Sigma_{R}$.

- Employ a 'splitting version' of HSinl

Lyndon interpolation of INL

- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α)
If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
- INL $\vdash \phi \rightarrow \epsilon \quad$ and \quad INL $\vdash \epsilon \rightarrow \psi$.
(a 'polar generalization' of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

- $\mathcal{V}^{ \pm}(\epsilon) \subseteq\left(\mathcal{V}^{\mp}\left(\Pi_{R}, \Sigma_{L}\right)\right) \cap\left(\mathcal{V}^{ \pm}\left(\Pi_{L}, \Sigma_{R}\right)\right)$
- $\mathrm{HSinl} \vdash \Pi_{L} \Rightarrow \Sigma_{L}, \epsilon \quad$ and $\mathrm{HSinl} \vdash \epsilon, \Pi_{R} \rightarrow \Sigma_{R}$.
- Employ a 'splitting version' of HSinl
- each rule offers an interpolant of its conclusion
built up from those of its premises;
- cannot be included here in a readable manner.
- Lydon interpolation theorem:
(Let $\mathcal{V}^{+}(\alpha) / \mathcal{V}^{-}(\alpha)$ denotes positive/negative atoms in α)
If INL $\vdash \phi \rightarrow \psi$, then there is a formula ϵ s.t.:
- $\mathcal{V}^{ \pm}(\epsilon) \subseteq \mathcal{V}^{ \pm}(\phi) \cap \mathcal{V}^{ \pm}(\psi)$
- INL $\vdash \phi \rightarrow \epsilon \quad$ and \quad INL $\vdash \epsilon \rightarrow \psi$.
(a 'polar generalization' of Craig interpolation)
- A general form:

If $\mathrm{HSinl} \vdash \Pi_{L}, \Pi_{R} \Rightarrow \Sigma_{L}, \Sigma_{R}$, then there is a formula ϵ s.t.:

- $\mathcal{V}^{ \pm}(\epsilon) \subseteq\left(\mathcal{V}^{\mp}\left(\Pi_{R}, \Sigma_{L}\right)\right) \cap\left(\mathcal{V}^{ \pm}\left(\Pi_{L}, \Sigma_{R}\right)\right)$
- HSinl $\vdash \Pi_{L} \Rightarrow \Sigma_{L}, \epsilon \quad$ and $\mathrm{HSinl} \vdash \epsilon, \Pi_{R} \rightarrow \Sigma_{R}$.
- Employ a 'splitting version' of HSinl
- each rule offers an interpolant of its conclusion built up from those of its premises;
- cannot be included here in a readable manner.
- Thanks !

