
A Hyper-sequent Calculus for INL

Yu, Junhua

Tsinghua University

2017.04.13 @ Zhejiang University

Junhua Yu A Hyper-sequent Calculus for INL



Outline
Backgrounds

Neighborhood semantics & ‘Basic’ neighborhood logic NL
‘Instantial’ neighborhood logic INL
Expressive power & Axiomatization

Proof Theory
Semantic tableau & Hyper-sequent calculus HSinl
Soundness, (Cut)-admissibility, & Completeness
Lyndon interpolation

Future directions

Junhua Yu A Hyper-sequent Calculus for INL



Abbreviation: “nbd” means “neighborhood”

Background
Joint work with

Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist
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Nbd semantics

Frame: F = (W , σ)

W 6= ∅, a domain;
σ : W 7→ 22W

, a nbd function.
Model: M = (F,V )

F, a nbd frame;
V : W 7→ 2P , a propositional valuation.

Remarks:
Nbd semantics is general
Specified properties of nbd functions

each state has a nbd,
{w} is a nbd of w (resp. ∅,W , ...),
each nbd is non-empty,
each nbd of w contains w ,
each state has exactly 1 nbd,
nbd is closed under ... .
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Basic nbd logic NL

Basic modal language: unary operator � (♦ as defined).
Truth definition - a ∃∀ reading of �:

M,w � �α iff (∃N ∈ σ(w))(∀n ∈ N)M,n � α.
a neighborhood (of the current state) has α true
everywhere inside.

Some schemes of normal K are NOT valid:
2 �(p→q)→(�p→�q),
2 (�p ∧�q)→�(p ∧ q),
(Nec) (� φ) 6⇒ (� �φ).
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Basic nbd logic NL

Axiomatization:
(axiom and rule) Schemes of classical propositional calculus.
Rule scheme RE (rule of replacement)

α↔ β φ

φ′

where φ′ is φ with an occurrance of α replaced by β

�(α ∧ β)→�α ∧�β.
An α ∧ β neighborhood is also an α neighborhood.
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Instantial nbd logic INL

Same frames/models with an “instantial” language:
Operator (with any positive finite arity) �(αi , ..., αj ;α0).

Truth definition - a “∃(∃, ...,∃;∀)” reading of �:
M,w � �(α1, ..., αj ;α0) iff

(∃N ∈ σ(w))


(∀n ∈ N)M,n � α0
(∃n1 ∈ N)M,n1 � α1
...
(∃nj ∈ N)M,nj � αj

a neighborhood (of the current state) has

α0 true everywhere inside, and
αi true somewhere inside (resp. for each i ∈ {1, ..., j}).
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Instantial nbd logic INL

Some invalid schemes:
2 ¬�(;⊥) (empty neighborhoods are permitted)

cf. a validity: � ¬�(α;⊥).

2 �(;>) (a state can have no neighborhoods).
2 �(α;ψ) ∧�(β;ψ)→�(α, β;ψ)

(neighborhoods given by premises may be distinct).
Also, there are valid schemes.

An axiomatization later.
Reducible to NL? NO.
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INL - expressive power

�φ in the basic language can be written as �(;φ).
Let n = 0 in �(φ1, ..., φn;φ).

Expressive power of the new language is not weaker than
the basic language.

The new language is

strictly more expressive

than the basic one.
So axiomatization of INL is not trivial.

Junhua Yu A Hyper-sequent Calculus for INL



INL - expressive power

�φ in the basic language can be written as �(;φ).
Let n = 0 in �(φ1, ..., φn;φ).

Expressive power of the new language is not weaker than
the basic language.

The new language is

strictly more expressive

than the basic one.
So axiomatization of INL is not trivial.

Junhua Yu A Hyper-sequent Calculus for INL



INL - expressive power

(Basic bisimulation test): - if w 
 w ′, i.e.:
V (w) = V ′(w ′),
∀N ∈ σ(w).∃N ′ ∈ σ(w ′).∀n′ ∈ N ′.∃n ∈ N.(n 
 n′),
∀N ′ ∈ σ(w ′).∃N ∈ σ(w).∀n ∈ N.∃n′ ∈ N ′.(n 
 n′);

then w and w ′ agree on all formulas in the basic language.
No longer capable in the instantialbe setting:

0 
 0′0 0′
↓ ↓

2

1 � p 1′ � p
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INL - expressive power

B.t.w., an instantial bisimulation should should take care of both directions:

V (w) = V ′(w ′),
if ∀N ∈ σ(w).∃N ′ ∈ σ(w ′).
[[∀n′ ∈ N ′.∃n ∈ N.(n � n′)]&[∀n ∈ N.∃n′ ∈ N ′.(n � n′)]],
if ∀N ′ ∈ σ(w ′).∃N ∈ σ(w).
[[∀n ∈ N.∃n′ ∈ N ′.(n � n′)]&[∀n′ ∈ N ′.∃n ∈ N.(n � n′)]].
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INL - axiomatization

Classical propositional logic with rule scheme RE ;

Additional schemes:
R −mon:
�(α1, ..., αj ;α0)→�(α1, ..., αj ;α0 ∨ η)
L−mon:
�(α1, ..., αj , φ;α0)→�(α1, ..., αj , φ ∨ ψ;α0)
Inst :
�(α1, ..., αj , η;α0)→�(α1, ..., αj , η ∧ α0;α0)
Norm:
¬�(α1, ..., αj ,⊥;α0)
Case:
�(α1, ..., αj ;α0)→(�(α1, ..., αj , δ;α0)∨�(α1, ..., αj ;α0∧¬δ))
Weak :
�(α1, α2, ..., αj ;α0)→�(α2, ..., αj ;α0)
Dupl :
�(α1, ..., αj ;α0)→�(α1, ..., αj , αi ;α0) where i ∈ {1, ..., j}
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INL - axiomatization

Some Derivable Schemes:
` �(α1, ..., αi , γ, δ, β1, ..., βj ;ψ)→�(α1, ..., αi , δ, γ, β1, ..., βj ;ψ)

Together with Weak and Dupl , we can read
‘instance-formulas’ as a finite set.

` �(α1, ..., αj ;α0)→�(α1, ..., αj ,>;α0), when j > 0
Not valid when j = 0.

φ→ψ

�(α1, ..., αj ;φ)→�(α1, ..., αj ;ψ)

R −mon as a rule scheme.
φ→ψ

�(α1, ..., αj , φ;α0)→�(α1, ..., αj , ψ;α0)

L−mon as a rule scheme.
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Complexity

Satisfiability problem of INL is PSPACE-complete.
Faithful embeddings K ↪→ INL ↪→ K⊕ K;
Both K and K⊕ K are PSPACE-complete.
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Proof Theory
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Semantic tableau

General idea of semantic tableau
In order to prove φ, start with the goal of satisfying ¬φ
Reduce goals to subgoals (usually on subformulas)

Rules
Impossible goals are “closed”, otherwise “open”

Impossible - have ⊥ or ‘both α and ¬α’;
“Open” tableaus provide hints to counter-models (of φ);
“Closed” tableaus are defined as proofs (of φ).

Rules for classical propositional logic
||...|| means branching

¬¬φ
φ

α ∧ β
α
β

¬(α ∨ β)

¬α
¬β

¬(α→β)

α
¬β

¬(α ∧ β)

||¬α || ¬β||
α ∨ β
||α ||β||

α→β

||¬α ||β||

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

General idea of semantic tableau
In order to prove φ, start with the goal of satisfying ¬φ
Reduce goals to subgoals (usually on subformulas)

Rules
Impossible goals are “closed”, otherwise “open”

Impossible - have ⊥ or ‘both α and ¬α’;
“Open” tableaus provide hints to counter-models (of φ);
“Closed” tableaus are defined as proofs (of φ).

Rules for classical propositional logic
||...|| means branching

¬¬φ
φ

α ∧ β
α
β

¬(α ∨ β)

¬α
¬β

¬(α→β)

α
¬β

¬(α ∧ β)

||¬α || ¬β||
α ∨ β
||α ||β||

α→β

||¬α ||β||

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

General idea of semantic tableau
In order to prove φ, start with the goal of satisfying ¬φ
Reduce goals to subgoals (usually on subformulas)

Rules
Impossible goals are “closed”, otherwise “open”

Impossible - have ⊥ or ‘both α and ¬α’;
“Open” tableaus provide hints to counter-models (of φ);
“Closed” tableaus are defined as proofs (of φ).

Rules for classical propositional logic
||...|| means branching

¬¬φ
φ

α ∧ β
α
β

¬(α ∨ β)

¬α
¬β

¬(α→β)

α
¬β

¬(α ∧ β)

||¬α || ¬β||
α ∨ β
||α ||β||

α→β

||¬α ||β||

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

INL needs (at least) a modal rule.
A �-formula requires a nbd (with certain properties);
A ¬�-formula refutes any nbd (with certain properties).
�’s do not work together to close a goal;
they each does, together with all ¬�’s in the same goal.

The rule takes from a goal:
one �-formula, and
and any number of ¬�-formulas

(with variant numbers of instances):

�(α1, ..., αj ;α0)
¬�(β1

1 , ..., β
1
j1

;β1
0)

...
¬�(βk

1 , ..., β
k
jk

;βk
0 )∣∣∣∣∣∣∣∣ |α0 ∧ σ ∧

∧I(i) 6=0
i∈{1,...,k} ¬β

i
I(i)|σ∈{αx}j

x=1∪{¬β
y
0}

I(y)=0
y∈{1,...,k}

∣∣∣∣∣∣∣∣
I∈

⊗k
z=1{0,...,jz}
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Semantic tableau
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�(α1, ..., αj ;α0) requires a nbd with (generally) j states.
Each nbd is consistent, if all its states are.

∀i ∈ {1, ..., k}, ¬�(β i
1, ..., β

i
ji
;β i

0) requires that
either - β i

0 fails at some state,
or - β i

h fails at each state for some h ∈ {1, ..., ji}.∏k
z=1(jz + 1) options in total.

Index possible nbd’s by the option it takes, e.g., 〈I(1), ..., I(k)〉.
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Semantic tableau
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⊗k
z=1{0,...,jz}

It is
∏k

z=1(jz + 1)-branching
In order to close a tableau, each branch has to be closed.

Branch correspond to neighborhoods of the current state.

Each branch offers a hyper-node
A collection of regular nodes (labeled by formulas).

To close a branch, it is enough to close one node in the hyper-node.

Nodes correspond to states in the neighborhood.
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Semantic tableau
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It is destructive
Formulas (used or not) above the line cannot be used any longer (on this

branch) to trigger a rule or to close a branch.
An example ` �(φ ∨ χ; θ)→�(φ; θ) ∨�(χ; θ)

1
9
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Semantic tableau

Call the above mentioned tableau system TABinl
TABinl is sound and complete

The direct proof of completeness requires an extraction of
counter-model out of a ‘systematical-yet-failed’ implement of
rules, and hence is ugly

TABinl offers a decision procedure
TABinl indicates a way to some real proof-theory

- a hyper sequent calculus

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

Call the above mentioned tableau system TABinl
TABinl is sound and complete

The direct proof of completeness requires an extraction of
counter-model out of a ‘systematical-yet-failed’ implement of
rules, and hence is ugly

TABinl offers a decision procedure
TABinl indicates a way to some real proof-theory

- a hyper sequent calculus

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

Call the above mentioned tableau system TABinl
TABinl is sound and complete

The direct proof of completeness requires an extraction of
counter-model out of a ‘systematical-yet-failed’ implement of
rules, and hence is ugly

TABinl offers a decision procedure
TABinl indicates a way to some real proof-theory

- a hyper sequent calculus

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

Primitive connectives: {⊥,→,�} (classical)

Multi-set-based, G3-style
No Exchange
Built-in Weakening and Contraction
Easier proofs of (Cut)-admissibility

Hyper-sequent
|Γ1 ⇒ ∆1|...|Γn ⇒ ∆n| - finite multi-set of regular sequents

‘standing for’
∨n

i=1((
∧

Γi )→(
∨

∆i ))
Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

Intuitive correspondence
regular sequents ∼ states
hyper-sequents ∼ nbd’s
- sufficient to prove (close) one sequent (state) in

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

Primitive connectives: {⊥,→,�} (classical)

Multi-set-based, G3-style
No Exchange
Built-in Weakening and Contraction
Easier proofs of (Cut)-admissibility

Hyper-sequent
|Γ1 ⇒ ∆1|...|Γn ⇒ ∆n| - finite multi-set of regular sequents

‘standing for’
∨n

i=1((
∧

Γi )→(
∨

∆i ))
Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

Intuitive correspondence
regular sequents ∼ states
hyper-sequents ∼ nbd’s
- sufficient to prove (close) one sequent (state) in

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

Primitive connectives: {⊥,→,�} (classical)

Multi-set-based, G3-style
No Exchange
Built-in Weakening and Contraction
Easier proofs of (Cut)-admissibility

Hyper-sequent
|Γ1 ⇒ ∆1|...|Γn ⇒ ∆n| - finite multi-set of regular sequents

‘standing for’
∨n

i=1((
∧

Γi )→(
∨

∆i ))
Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

Intuitive correspondence
regular sequents ∼ states
hyper-sequents ∼ nbd’s
- sufficient to prove (close) one sequent (state) in

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

Primitive connectives: {⊥,→,�} (classical)

Multi-set-based, G3-style
No Exchange
Built-in Weakening and Contraction
Easier proofs of (Cut)-admissibility

Hyper-sequent
|Γ1 ⇒ ∆1|...|Γn ⇒ ∆n| - finite multi-set of regular sequents

‘standing for’
∨n

i=1((
∧

Γi )→(
∨

∆i ))
Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

Intuitive correspondence
regular sequents ∼ states
hyper-sequents ∼ nbd’s
- sufficient to prove (close) one sequent (state) in

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

Primitive connectives: {⊥,→,�} (classical)

Multi-set-based, G3-style
No Exchange
Built-in Weakening and Contraction
Easier proofs of (Cut)-admissibility

Hyper-sequent
|Γ1 ⇒ ∆1|...|Γn ⇒ ∆n| - finite multi-set of regular sequents

‘standing for’
∨n

i=1((
∧

Γi )→(
∨

∆i ))
Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

Intuitive correspondence
regular sequents ∼ states
hyper-sequents ∼ nbd’s
- sufficient to prove (close) one sequent (state) in

Junhua Yu A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

G|Π,p ⇒ p,Σ
(Ax) and

G|Π,⊥ ⇒ Σ
(L⊥)

G: meta-variable for sequent multi-sets (hyper-sequents)

G|Π, α⇒ β,Σ

G|Π⇒ α→β,Σ
(R→)

[G|Π⇒ α,Σ][G|Π, β ⇒ Σ]

G|Π, α→β ⇒ Σ
(L→)

[...] stands for branches

∣∣∣∣α0, αx ⇒
{
β i

I(i)

}I(i) 6=0

i∈{1,...,k}

∣∣∣∣
x∈{1,...,j}∣∣∣∣α0 ⇒ βy

0 ,
{
β i

I(i)

}I(i)6=0

i∈{1,...,k}

∣∣∣∣I(y)=0

y∈{1,...,k}


I∈

⊗k
i=1{0,1,...,ji}

G|Π,�(α1, ..., αj ;α0)⇒ {�(β i
1, ..., β

i
ji
)}ki=1,Σ

(�)
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Hyper-sequent calculus HSinl

HSinl is sound.
If HSinl ` |Γ1 ⇒ ∆1|...|Γn ⇒ ∆n|,

then INL `
∨n

i=1(
∧

Γi→
∨

∆i ).
Proved by an induction.
For the (�) rule, a sub-induction gives a stronger form of
what we need.

HSinl is complete.
If INL ` φ, then HSinl `⇒ φ.
{φ |HSinl `⇒ φ} includes all axioms of INL.
{φ |HSinl `⇒ φ} is closed under MP

A corollary of (Cut)-admissibility.

{φ |HSinl `⇒ φ} is closed under RE .
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Hyper-sequent calculus HSinl

Admissibility of (Cut) (no matter (Cut+) or (Cut×))

In HSinl resp. “HSinl⊕ (Cut+) of a certain ‘degree’ ”:
Internal/External Weakening is d.p.a.

(depth-preserved admissible).
Actually, in each provable hyper-sequent
there is a provable sequent.
For each formula α, (hyper-)sequent α⇒ α is provable.
External/Internal Contraction is d.p.a..

D.p.a. of External Contraction is used
when showing that of Internal Contraction.

Based on HSinl,
rules (Cut+) and (Cut×) (at any same ‘degree’) are
inter-derivable.
Then, a standard double-induction works.

Subformula property of HSinl as a corollary.
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Then, a standard double-induction works.

Subformula property of HSinl as a corollary.
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Lyndon interpolation of INL

Lydon interpolation theorem:
(Let V+(α)/V−(α) denotes positive/negative atoms in α)

If INL ` φ→ψ, then there is a formula ε s.t.:
V±(ε) ⊆ V±(φ) ∩ V±(ψ)

INL ` φ→ε and INL ` ε→ψ.

(a ‘polar generalization’ of Craig interpolation)

A general form:
If HSinl ` ΠL,ΠR ⇒ ΣL,ΣR, then there is a formula ε s.t.:

V±(ε) ⊆ (V∓(ΠR ,ΣL)) ∩ (V±(ΠL,ΣR))

HSinl ` ΠL ⇒ ΣL, ε and HSinl ` ε,ΠR→ΣR .

Employ a ‘splitting version’ of HSinl
each rule offers an interpolant of its conclusion
built up from those of its premises;
cannot be included here in a readable manner.
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