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Multi-agent Epistemic Logic

Multi-agent Epistemic Logic



Epistemic Logic

Anne draws one from a stack of three different cards 0, 1, and 2.
She draws card 0. She does not look at her card yet!
Card 1 is put back into the stack holder.
Card 2 is put (face down) on the table.
Anne now looks at her card.
What does Anne know?

◮ Anne holds card 0.

◮ Anne knows that she holds card 0.

◮ Anne does not know that card 1 is on the table.

◮ Anne considers it possible that card 1 is on the table.

◮ Anne knows that card 1 or card 2 is in the stack holder.

◮ Anne knows her own card.



Language

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ



Descriptions of knowledge

◮ There is one agent Anne: {a}

◮ Propositional variables qa for ‘card q (0, 1, 2) is held by Anne.’

◮ Kaϕ expresses ‘Anne knows that ϕ’.

◮ K̂aϕ (¬Ka¬ϕ) expresses ‘Anne considers it possible that ϕ’.

◮ Anne holds card 0: 0a
◮ Anne knows that she holds card 0: Ka0a

◮ Anne does not know that card 1 is on the table: ¬Ka1t

◮ Anne considers it possible that card 1 is not on the table:
K̂a¬1t

◮ Anne knows that card 1 or card 2 is in the stack holder:
Ka(1h ∨ 2h)

◮ Anne knows her own card: Ka0a ∨ Ka1a ∨ Ka2a



Structures

A Kripke model is a structure M = 〈S ,R ,V 〉, where

◮ domain S is a nonempty set of states;

◮ R yields an accessibility relation Ra ⊆ S × S for every a ∈ A;

◮ valuation (function) V : P → P(S).

If all the relations Ra in M are equivalence relations, we call M an
epistemic model. In that case, we write ∼a rather than Ra, and we
represent the model as M = 〈S ,∼,V 〉.

Epistemic state (M, s): epistemic model M with designated state s.



Example

Hexa1 = 〈Hexa1,∼,V 〉:

◮ S = {012, 021, 102, 120, 201, 210}

◮ ∼a = {(012, 012), (012, 021), (021, 021), . . . }

◮ V (0a) = {012, 021}, V (1a) = {102, 120}, ...
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Truth

M, s |= p iff s ∈ V (p)
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ¬ϕ iff not (M, s |= ϕ)
M, s |= Kaϕ iff for all t such that s ∼a t it holds that M, t |= ϕ



Example
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Hexa1, 012 |= Ka0a
⇐
for all t : 012 ∼a t implies Hexa1, t |= 0a
⇐
Hexa1, 012 |= 0a and Hexa1, 021 |= 0a
⇐
012 ∈ V (0a) = {012, 021} and 021 ∈ V (0a) = {012, 021}



Two agents

Anne and Bill draw 0 and 1 from the cards 0, 1, 2. Card
2 is put (face down) on the table.
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◮ Bill does not consider it possible that Anne has card 1: ¬K̂b1a

◮ Anne considers it possible that Bill considers it possible that
she has card 1: K̂aK̂b1a

◮ Anne knows Bill to consider it possible that she has card 0:
KaK̂b0a



Three agents: Anne, Bill, Cath draw 0, 1, and 2
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◮ Anne knows that Bill knows that Cath knows her own card:
KaKb(Kc0c ∨ Kc1c ∨ Kc2c )

◮ Anne has card 0, but she considers it possible that Bill
considers it possible that Cath knows that Anne does not have
card 0: 0a ∧ K̂aK̂bKc¬0a



Example
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Hexa, 012 |= K̂aK̂bKc¬0a
⇐
012 ∼a 021 and Hexa, 021 |= K̂bKc¬0a
⇐
021 ∼b 120 and Hexa, 120 |= Kc¬0a
⇐
∼c (120) = {120, 210}, Hexa, 120 |= ¬0a and Hexa, 210 |= ¬0a
⇐
Hexa, 120 6|= 0a and Hexa, 210 6|= 0a
⇐
120, 210 6∈ V (0a) = {012, 021}



Properties of knowledge

◮ Kaϕ→ ϕ veridicality / truth axiom

◮ Kaϕ→ KaKaϕ positive introspection

◮ ¬Kaϕ→ Ka¬Kaϕ negative introspection

Realistic assumptions for knowledge?

Negative introspection:
you are aware of everything you don’t know. Really?
Weaker logic S4.2: K̂aKaϕ→ KaK̂aϕ (.2, confluence)

Truth: everything you know is true. Really?
Weaker logic KD45 (introspective belief): Kaϕ→ K̂aϕ (D,
seriality)



Frame characterization

A Kripke model 〈S ,R ,V 〉 without the valuation V of atoms is a
Kripke frame 〈S ,R〉. A formula ϕ is valid on a frame iff it is valid
on all models based on that frame. Correspondence between
Kripke frames and properties of knowledge:

◮ Kaϕ→ ϕ is valid on a frame, iff the frame is reflexive

◮ Kaϕ→ KaKaϕ is valid on a frame, iff the frame is transitive

◮ ¬Kaϕ→ Ka¬Kaϕ is valid on a frame, iff it is euclidean

Ra is euclidean: if Ra(s, s
′) and Ra(s, s

′′), then Ra(s
′, s ′′).



Frame characterization

We prove that the formula scheme Kϕ→ ϕ is valid on a frame
F = 〈S ,R〉, if and only if R is reflexive.

⇐ Let V be an arbitrary valuation on F . Consider the model
M = 〈F ,V 〉. Suppose that M, s |= Kϕ. As R is reflexive, we have
that R(s, s). From R(s, s) and M, s |= Kϕ follows that M, s |= ϕ.
So M, s |= Kϕ→ ϕ. As s and V were arbitrary, F |= Kϕ→ ϕ.

⇒ If R is not reflexive, there is a s ∈ S such that not R(s, s).
Define, for some p ∈ P : V (p) = S \ s. Now, M, s |= Kp, because
in all accessible worlds (which excludes s!) p is true. But M, s 6|= p.
So M, s 6|= Kp → p. But that means that the scheme Kϕ→ ϕ is
not valid on the frame F : on any not reflexive frame we have
found a valuation, and state, and a formula, such that it is false.



Frame characterization

The correspondence does not work on the level of models.

Schema Kϕ→ ϕ is valid on this non-reflexive model where a
single atom p holds in both worlds:

• •



Frame characterization

Axiom Kaϕ→ KaKaϕ (4, positive introspection) corresponds to
frame property ∀s, t, u,Ra(s, t) ∧ Ra(t, u) → Ra(s, u) (transitivity)

Proof. Take the dual K̂aK̂aϕ→ K̂aϕ of the axiom.

⇐ Let M, s |= K̂aK̂aϕ. Then there are t, u with Ra(s, t) and
Ra(t, u) such that M, u |= ϕ. From Ra(s, t), Ra(t, u) and
transitivity follows Ra(s, u). From Ra(s, u) and M, u |= ϕ follows
M, s |= K̂aϕ.

⇒ Given a non-transitive frame. There must be s, t, u with
Ra(s, t) and Ra(t, u) but not Ra(s, u). Consider model M such
that atom p only true at u. We now have M, s |= K̂aK̂ap but
M, s 6|= K̂ap. Therefore K̂aK̂aϕ→ K̂aϕ does not hold on that
frame for all ϕ and for all valuations.



Multi-agent frame characterization

Multi-agent frame property: Kaϕ→ Kbϕ.
Corresponds to Rb ⊆ Ra.
(Agent b knows more than agent a?)



Axiomatization

all instantiations of propositional tautologies
Ka(ϕ→ ψ) → (Kaϕ→ Kaψ)
Kaϕ→ ϕ

Kaϕ→ KaKaϕ

¬Kaϕ→ Ka¬Kaϕ

From ϕ and ϕ→ ψ, infer ψ
From ϕ, infer Kaϕ

Give derivations of:

Kap → Ka(p ∨ q)
Ka¬p → ¬Kap



History

◮ von Wright 1951: An Essay in Modal Logic

◮ Hintikka 1962: Knowledge and Belief

◮ Fagin, Halpern, Moses and Vardi 1995: Reasoning about
Knowledge

◮ Meyer and van der Hoek 1995: Epistemic Logic for AI and
Computer Science



General knowledge and common knowledge

You forgot if you already passed the Channel Tunnel...
When driving on a one-lane road, will you swerve to the
left or to the right when other traffic approaches? How
do you know that the other car knows that one is to drive
on the left?

You are celebrating Sinterklaas (St. Nicholas) with family
friends. How will you behave if its generally known that
your 8-year old niece does not believe in Sinterklaas?
And if it is common knowledge?



General knowledge and common knowledge

General knowledge:
EGϕ := K1ϕ ∧ K2ϕ ∧ ... ∧ Klastϕ

Common knowledge:
CGϕ := ϕ ∧ EGϕ ∧ EGEGϕ ∧ ...
or
CGϕ := ϕ ∧ K1ϕ ∧ K2ϕ ∧ K1K1ϕ ∧ K1K2ϕ ∧ . . .K1K1K1ϕ . . .

CGϕ↔ ϕ ∧ EGCGϕ



Computing transitive closure

∼B := (
⋃

a∈B

∼a)
∗

R∗ is the transitive and reflexive closure of a binary relation R :
points s and t are R∗-related, if there is a path (of length 0 or
more) of R-links between them.
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What is the partition on these nine states for a?
For group {a, b}? For group {a, c}? For group {a, b, c}?



Epistemic Logic with Common Knowledge

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ

∼B := (
⋃

a∈B

∼a)
∗

M, s |= CBϕ iff for all t : s ∼B t implies M, t |= ϕ

Common knowledge has the properties of knowledge:

◮ CBϕ→ ϕ veridicality / truth axiom

◮ CBϕ→ CBCBϕ positive introspection

◮ ¬CBϕ→ CB¬CBϕ negative introspection



Example
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Hexa, 012 |= Cabc(Ka0a ∨ Ka1a ∨ Ka2a)
(it is public knowledge that Anne knows her card)

Hexa |= Cabϕ→ Cbcϕ

(a and b share the same knowledge as b and c)



Example
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Which of the following are true / false:

11 |= Kc(x = 1)
11 |= Cac(y 6= 0)
10 |= Cab(x ≥ 1)
02 |= Cab((y = 2) → Ccb(x > 0))



Axiomatization

CB(ϕ→ ψ) → (CBϕ→ CBψ)
CBϕ→ (ϕ ∧ EBCBϕ)
CB(ϕ→ EBϕ) → (ϕ→ CBϕ)
From ϕ, infer CBϕ

Give derivations of:
CBϕ→ CBCBϕ

¬CBϕ→ CB¬CBϕ

Variations:

◮ reflexive and transitive closure, or just transitive closure?

◮ just transitive: CB(ϕ→ EBϕ) → (EBϕ→ CBϕ)

◮ axiom or derivation rule: From ϕ→ EBϕ, infer ϕ→ CBϕ



Common knowledge and common belief

Common knowledge has the properties of knowledge.

◮ CBϕ→ ϕ

◮ CBϕ→ CBCBϕ

◮ ¬CBϕ→ CB¬CBϕ

Common belief does not have (all) the properties of belief.

◮ CBϕ→ ¬CB¬ϕ

◮ CBϕ→ CBCBϕ

◮ not valid is: ¬CBϕ→ CB¬CBϕ (negative introspection)

Countermodel (for which ¬Cabp, but K̂aCabp):

p ¬p
• •

•

a b

a ab b



Relativized common knowledge

Common knowledge was defined as:

M, s |= CBϕ iff for all t, s ∼B t implies M, t |= ϕ

Consider the novel construct Cψ
Bϕ for

‘along all the B-paths satisfying ψ it holds that ϕ.’

This is called common knowledge of ϕ relativized to ψ.

Let s ∼ψ
a t iff s ∼a t and M, t |= ψ, and ∼ψ

B := (
⋃

a∈B ∼ψ
a )+.

Then we define:

M, s |= Cψ
Bϕ iff for all t, s ∼ψ

B t implies M, t |= ϕ

We have that C⊤
B ϕ iff CBϕ. Epistemic logic with relativized

common knowledge is more expressive than epistemic logic.



Distributed knowledge

Construct DBϕ for “it is distributed knowledge among B that ϕ”.

M, s |= DBϕ iff s ∼a t for all a ∈ B , implies M, t |= ϕ

E.g., agents a, b, c have distributed knowledge of the card deal.
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History

◮ Lewis 1969: Convention

◮ Friedell 1969: On the structure of shared awareness

◮ Aumann 1976: Agreeing to disagree

◮ Barwise 1988: Three views of common knowledge



Public announcements

Public announcements



Example
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◮ After Anne says that she does not have card 1, Cath knows
that Bill has card 1.

◮ After Anne says that she does not have card 1, Cath knows
Anne’s card.

◮ Bill still doesn’t know Anne’s card after that.



Example
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◮ After Anne says that she does not have card 1, Cath knows
that Bill has card 1.
[¬1a]Kc1b

◮ After Anne says that she does not have card 1, Cath knows
Anne’s card.
[¬1a](Kc0a ∨ Kc1a ∨ Kc2a)

◮ Bill still doesn’t know Anne’s card after that:
[¬1a]¬(Kb0a ∨ Kb1a ∨ Kb2a)



Public Announcement Logic: language

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ | [ϕ]ϕ

Write 〈ϕ〉ψ for ¬[ϕ]¬ψ

For [ϕ]ψ read “after the announcement of ϕ, ψ (is true).”

For 〈ϕ〉ψ read “ϕ is true and after the announcement of ϕ, ψ.”



Public Announcement Logic: semantics

The effect of the public announcement of ϕ is the restriction of the
epistemic state to all states where ϕ holds. So, ‘announce ϕ’ can
be seen as an epistemic state transformer, with a corresponding
dynamic modal operator [ϕ].

‘ϕ is the announcement’
means
‘ϕ is publicly and truthfully announced’.

M, s |= [ϕ]ψ iff (M, s |= ϕ implies M|ϕ, s |= ψ)

M|ϕ := 〈S ′,∼′,V ′〉:

S ′ := [[ϕ]]M := {s ∈ S | M, s |= ϕ}
∼′

a := ∼a ∩ ([[ϕ]]M × [[ϕ]]M)
V ′(p) := V (p) ∩ [[ϕ]]M



Example announcement in Hexa
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Hexa, 012 |= 〈¬1a〉Kc0a
⇐
Hexa, 012 |= ¬1a and Hexa|¬1a, 012 |= Kc0a
⇐
Hexa, 012 |= ¬1a and (Hexa|¬1a, 012 |= 0a and ∼c (012) =
{012})
⇐
012 6= V (1a) and 012 ∈ V ′(0a)



Muddy Children

A group of children has been playing outside and are called back
into the house by their father. The children gather round him. As
one may imagine, some of them have become dirty from the play
and in particular: they may have mud on their forehead. Children
can only see whether other children are muddy, and not if there is
any mud on their own forehead. All this is commonly known, and
the children are, obviously, perfect logicians. Father now says: “At
least one of you has mud on his or her forehead.” And then: “Will
those who know whether they are muddy please step forward.” If
nobody steps forward, father keeps repeating the request. What
happens?



Muddy Children
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Muddy Children
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After: At least one of you has mud on his or her forehead.



Muddy Children
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After: Will those who know whether they are muddy please step
forward?



Muddy Children

110

After: Will those who know whether they are muddy please step
forward?



Muddy Children

German translation of Rabelais’ Gargantua and Pantagruel:
Gottlob Regis, Meister Franz Rabelais der Arzeney Doctoren
Gargantua und Pantagruel, usw., Barth, Leipzig, 1832.

Ungelacht pfetz ich dich. Gesellschaftsspiel. Jeder zwickt seinen
rechten Nachbar an Kinn oder Nase; wenn er lacht, giebt er ein
Pfand. Zwei von der Gesellschaft sind nämlich im Complot und
haben einen verkohlten Korkstöpsel, woran sie sich die Finger, und
mithin denen, die sie zupfen, die Gesichter schwärzen. Diese
werden nun um so lächerlicher, weil jeder glaubt, man lache über
den anderen.

I pinch you without laughing. Parlour game. Everybody pinches his
right neighbour into chin or nose; if one laughs, one must give a
pledge. Two in the round have secretly blackened their fingers on a
charred piece of cork, and hence will blacken the faces of their
neighbours. These neighbours make a fool of themselves, since
they both think that everybody is laughing about the other one.



Axiomatization

[ϕ]p ↔ (ϕ→ p)
[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)
[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
[ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)
[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ
From ϕ, infer [ψ]ϕ
From χ→ [ϕ]ψ and χ ∧ ϕ→ EBχ, infer χ→ [ϕ]CBψ

Expressivity (Plaza, Gerbrandy):
Every formula in the language of public announcement logic
without common knowledge is equivalent to a formula in the
language of epistemic logic.



Sequence of announcements

[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

Anne does not have card 1, and Cath now knows Anne’s card.
Sequence of two announcements:

¬1a ; (Kc0a ∨ Kc1a ∨ Kc2a)

Single announcement:

¬1a ∧ [¬1a](Kc0a ∨ Kc1a ∨ Kc2a)
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Announcement and knowledge

[ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)

Hexa, 012 |= [¬0a]Kc0a
Hexa, 012 6|= Kc [¬0a]0a
Hexa, 012 |= ¬0a → Kc [¬0a]0a
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Announcement and common knowledge

From χ→ [ϕ]ψ and χ ∧ ϕ→ EBχ, infer χ→ [ϕ]CBψ

ψ ψ ψ

• • · · · •

• • · · ·
ϕ χ ϕ χ

a a′

ϕ ϕ

a a′

B

‘Common knowledge induction’ is a special case.
Take ϕ := ⊤ and χ := ψ:
CB(ψ → EBψ) → (ψ → CBψ)



Relativized common knowledge

Announcement and common knowledge

From χ→ [ϕ]ψ and χ ∧ ϕ→ EBχ, infer χ→ [ϕ]CBψ

Announcement and relativized common knowledge

[ϕ]Cχ
Bψ ↔ C

ϕ∧[ϕ]χ
B [ϕ]ψ

Derived principle for common knowledge:

[ϕ]CBψ ↔ Cϕ
B
[ϕ]ψ



Unsuccessful updates

Postulate of success:
ϕ→ 〈ϕ〉CAϕ

Announcement of a fact always makes it public:

|= [p]CAp

Announcements of non-facts do not have to make them public:

6|= [ϕ]CAϕ

It can be even worse:

|= [p ∧ ¬Kap]¬(p ∧ ¬Kap)

0 1a 1
p ∧ ¬Kap



Unsuccessful updates

Successful formulas: [ϕ]ϕ is valid.
Because [ϕ]ϕ iff [ϕ]CAϕ iff ϕ→ [ϕ]CAϕ

Which formulas are successful?

◮ CAϕ, for any ϕ in the language (but only public knowledge)

◮ the language fragment of positive formulas
ϕ ::= p|¬p|ϕ ∨ ϕ|ϕ ∧ ϕ|Kaϕ|[¬ϕ]ϕ.

◮ the formula ¬Kp... (Lei Xian)

Characterization of one-agent successful formulas:
Holliday & Icard AiML 2010
Characterization of multi-agent successful formulas:
unknown!



Unsuccessful updates

At least I cannot learn from my own announcements...

So ignorance may become knowledge,
but at least knowledge may not become ignorance...



Unsuccessful updates

At least I cannot learn from my own announcements...

So ignorance may become knowledge,
but at least knowledge may not become ignorance...

Wrong again, same example...
Add an agent i with identity access on the model (‘the observer’).
After agent i announces Ki(p ∧ ¬Kap), this formula is false.
Agent i becomes ignorant (about that) from her own
announcement.
(E.g.) Agent i becomes knowledgeable about Kap!

0 1a 1
Ki(p ∧ ¬Kap)



Alternative semantics for public announcement

Truthful announcements

M, s |= [ϕ]ψ iff (M, s |= ϕ implies M|ϕ, s |= ψ)

M|ϕ := 〈S ′,∼′,V ′〉:

S ′ := [[ϕ]]M
∼′

a := ∼a ∩ ([[ϕ]]M × [[ϕ]]M)
V ′(p) := V (p) ∩ [[ϕ]]M

Believed announcements

M, s |= [ϕ]ψ iff Mϕ, s |= ψ

Mϕ := 〈S ,∼′′,V 〉:

∼′′
a := ∼a ∩ (S × [[ϕ]]M )

Remove arrows to states where the announcement is false.
Now announce something believed to be false...



History

◮ Plaza 1989: Logics of Public Communications

◮ Gerbrandy & Groeneveld 1997: Reasoning about Information
Change

◮ Baltag, Moss & Solecki 1998: The Logic of Common
Knowledge, Public Announcements, and Private Suspicions



Action models

Action models



What we cannot do yet...

(Anne holds 0, Bill holds 1, and Cath holds 2.) Anne
shows (only) Bill her card. (She shows card 0.) Cath
cannot see the face of the shown card, but notices that a
card is being shown.
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What we cannot do yet...

(Anne holds 0, Bill holds 1, and Cath holds 2.) Anne
shows (only) Bill her card. (She shows card 0.) Cath
cannot see the face of the shown card, but notices that a
card is being shown.
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What we also cannot do yet...

Anne holds 0, Bill holds 1, and Cath holds 2. Players
only know their own cards.
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Epistemic modeling

◮ Given is an informal description of a situation

◮ The modeler tries to determine:
◮ The set of relevant propositions
◮ The set of relevant agents
◮ The set of states
◮ An indistinguishability relation over these worlds for each agent



Dynamic modeling

◮ Given is an informal description of a situation and an event
that takes place in that situation.

◮ The modeler first models the epistemic situation, and then
tries to determine:

◮ The set of possible events
◮ The preconditions for the events
◮ An indistinguishability relation over these events for each agent



Action models

An action model M is a structure 〈S,∼, pre〉

◮ S is a finite domain of action points or events

◮ ∼a is an equivalence relation on S

◮ pre : S → L is a precondition function that assigns a
precondition to each s ∈ S.



Showing a card

(Anne holds 0, Bill holds 1, and Cath holds 2.) Anne
shows (only) Bill card 0. Cath cannot see the face of the
shown card, but notices that a card is being shown.

sh0 sh1

sh2

c

cc

◮ S = {sh0, sh1, sh2}
◮ ∼a = {(s, s) | s ∈ S}
◮ ∼b = {(s, s) | s ∈ S}
◮ ∼c = S× S
◮ pre(sh0) = 0a
◮ pre(sh1) = 1a
◮ pre(sh2) = 2a



Whispering

Bill asks Anne to tell him a card that she doesn’t have. Anne
whispers in Bill’s ear “I don’t have card 2”. Cath notices that the
question is answered, but cannot hear the answer.

wh0 wh1

wh2

c

cc

◮ S = {wh0,wh1,wh2}
◮ ∼a = {(s, s) | s ∈ S}
◮ ∼b = {(s, s) | s ∈ S}
◮ ∼c = S× S
◮ pre(wh0) = ¬0a
◮ pre(wh1) = ¬1a
◮ pre(wh2) = ¬2a



What do you learn from an action?

◮ Firstly, if you can distinguish two actions, then you can also
distinguish the states that result from executing the action.

◮ Secondly, you do not forget anything due to an action. States
that you could distinguish before an action are still
distinguishable.



Product update

Given are an epistemic state (M, s) with M = 〈S ,∼,V 〉 and an
action model (M, s) with M = 〈S,∼, pre〉. The result of executing
(M, s) in (M, s) is (M ⊗M, (s, s)) where M ⊗M = 〈S ′,∼′,V ′〉
such that:

◮ S ′ = {(s, s) | s ∈ S , s ∈ S, and M, s |= pre(s)}

◮ (s, s) ∼′
a (t, t) iff (s ∼a t and s ∼a t)

◮ (s, s) ∈ V ′(p) iff s ∈ V (p)



Anne shows card 0 to Bill
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Anne whispers ‘not 0’ to Bill
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Language

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ | [M, s]ϕ



Semantics

M, s |= p :iff s ∈ V (p)
M, s |= ¬ϕ :iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ :iff M, s |= ϕ and M, s |= ψ

M, s |= Kaϕ :iff for all s ′ ∈ S : s ∼a s
′ implies M, s ′ |= ϕ

M, s |= CBϕ :iff for all s ′ ∈ S : s ∼B s ′ implies M, s ′ |= ϕ

M, s |= [M, s]ϕ :iff M, s |= pre(s) implies M ⊗M, (s, s) |= ϕ



Syntax and semantics

◮ Are syntax and semantics clearly separated?

YES



Axiomatization

[M, s]p ↔ (pre(s) → p)
[M, s]¬ϕ↔ (pre(s) → ¬[M, s]ϕ)
[M, s](ϕ ∧ ψ) ↔ ([M, s]ϕ ∧ [M, s]ψ)
[M, s]Kaϕ↔ (pre(s) →

∧
s∼at

Ka[M, t]ϕ)

[M, s][M′, s′]ϕ↔ [(M, s); (M′, s′)]ϕ
From ϕ, infer [M, s]ϕ
Let (M, s) be an action model and let a set of formulas χt for
every t such that s ∼B t be given. From χt → [M, t]ϕ and
(χt ∧ pre(t)) → Kaχu for every t ∈ S such that s ∼B t, a ∈ B
and t ∼a u, infer χs → [M, s]CBϕ.

Every formula in the language of action model logic without
common knowledge is equivalent to a formula in the language of
epistemic logic.



Composition of action models

Given action models (M, s) with M = 〈S,∼, pre〉 and (M′, s′) with
M′ = 〈S′,∼′, pre′〉, their composition is the action model
(M;M′, (s, s′)) with M;M′ = 〈S′′,∼′′, pre′′〉:

◮ S′′ = {(s, s′) | s ∈ S, s′} ∈ S′

◮ (s, s′) ∼′′
a (t, t′) iff (s ∼a t and s ∼a t)

◮ pre′′(s, s′) = 〈M, s〉pre′(s′)



Action model composition – example

Anne shows 0 to Bill, after which Cath announces that she has 2.
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Composition of action models

0a 1a
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; 2c =

0a ∧ 2c 1a ∧ 2c

⊥
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Other example: reading a letter

Anne and Bill are sitting at a table. A messenger comes
in and delivers a letter to Anne. On the cover is written
“urgently requested data on United Agents.”

◮ tell
Anne reads the letter aloud. United Agents is doing well.

◮ read
Bill sees that Anne reads the letter. (United Agents is doing
well.)

◮ mayread
Bill leaves the table and orders a drink at the bar so that
Anne may have read the letter while he was away. (She does
not; United Agents is doing well.)

◮ bothmayread
Both may have read the letter. (Both read the letter; United
Agents is doing well.)



Other example: reading a letter

10 a, b

1 10 b

10

10

b

bb

a, b

10

10

10

10

a
a

a, b
a

bb

bb

a
b

a

tell
read

mayread

bothmayread



Closing example: picking up cards

Three players Anne, Bill, Cath are each dealt one of cards 0, 1, 2.

◮ pickupa: Anne picks up her card and looks at it. It is card 0.

◮ pickupb: Bill picks up his card and looks at it. It is card 1.

◮ pickupc : Cath picks up her card and looks at it. It is card 2.

pu0 pu1

pu2

bc

bcbc
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History

◮ Baltag, Moss & Solecki 1998: The Logic of Common
Knowledge, Public Announcements, and Private Suspicions

◮ van Ditmarsch, van der Hoek & Kooi 2007: Dynamic
Epistemic Logic

◮ van Benthem, van Eijck, Kooi 2006: Logics of communication
and change



Further developments in dynamic epistemic logic

◮ Factual change

◮ Belief revision

◮ Temporal epistemic logic



Factual change — Muddy Children again

Anne

Bill

Cath

There are three children, Anne, Bill, and Cath. Anne and Bill have
mud on their foreheads. Father announces:

◮ At least one of you is muddy.

◮ If you know whether you are muddy, step forward. (Nobody
steps forward.)

◮ If you know whether you are muddy, step forward. (Anne and
Bill step forward.)



Cleaning Muddy Children

Anne

Splash!
Bill

Cath

There are three children, Anne, Bill, and Cath. Anne and Bill have
mud on their foreheads. Father announces:

◮ At least one of you is muddy.

◮ Splash! Father empties a bucket of water over Anne.

◮ If you know whether you are muddy, step forward. (...?)

◮ If you know whether you are muddy, step forward. (...?)



Standard: Anne and Bill are muddy

000 100

010 110
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011 111

a
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a
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c
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a
c c
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110
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011 111

b

c
a

110

◮ At least one child is muddy.

◮ Nobody steps forward.

◮ Anne and Bill step forward.



Non-standard: Anne and Bill are muddy, Anne is cleaned

000 100
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c

b

b b

a
c c

a

splash!

◮ At least one child is muddy.

◮ Father empties a bucket of water over Anne (splash!)

◮ If you know whether you are muddy, step forward. (...?)

◮ If you know whether you are muddy, step forward. (...?)



Public factual change

Language

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Kaϕ | CAϕ | [ϕ]ψ | [p := ϕ]ψ

Semantics

M, s |= [p := ϕ]ψ iff Mp:=ϕ, s |= ψ

Mp:=ϕ is as M except that V (p) = [[ϕ]]M .

reduction principle: [p := ϕ]p ↔ ϕ.
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c
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c

ma ∨mb ∨mc ma := ⊥

¬(Kbmb ∨ Kb¬mb) ∧ ¬(Kcmc ∨ Kc¬mc)

¬(Kbmb ∨ Kb¬mb) ∧ ¬(Kcmc ∨ Kc¬mc)

At father’s second request, Cath learns that Anne knows that she
was initially dirty



Factual change with action models

An action model M is a structure 〈S,∼, pre, post〉

◮ S is a finite domain of action points or events

◮ ∼a is an equivalence relation on S

◮ pre : S → L is a precondition function that assigns a
precondition to each s ∈ S.

◮ post : S → (P → L) assigns a postcondition to each action
point for each atom (finitely different from the identity).

For s with pre(s) = ϕ and post(s)(p1) = ψ1, . . . write:

In case of the event s: if ϕ, then p1 := ψ1, ..., and pn := ψn.

Execution of action models with factual change. Same, except:

◮ V ′(p) = {(s, s) | (M, s) |= post(s)(p)}.

Example: one hundred prisoners and a lightbulb (later)



Belief revision

In dynamic epistemic logic, once you believe a fact, you will always
believe it (or you will go mad: lose your mind).

In belief revision, you may change your mind:
first you believe p, after revision with ¬p you believe ¬p.

Consider Kripke/epistemic models with preference relations.
A preference epistemic model is a structure M = 〈S ,R ,V , <〉

◮ domain S is a nonempty set of states;

◮ R yields an accessibility relation Ra ⊆ S × S for every a ∈ A;

◮ valuation (function) V : P → P(S).

◮ < yields a preference relation <a (s) ⊆ S × S for a ∈ A.
For knowledge and belief, <a (s) is independent from state s,
a total preorder, and we write <a (and by abbr. ≤a,=a, ...).

You believe ϕ, if ϕ is true in all preferred accessible states.
You know ϕ, if ϕ is true in all accessible states.



Belief revision – example

First you believe p, and after belief revision with ¬p you believe
¬p.

0 1 0 1
�¬p

0 1
>

0 1
<

�¬p



Belief revision – action models with preferences

A preference action model M is a structure 〈S,∼, pre, <〉

◮ S is a finite domain of action points or events

◮ ∼a is an equivalence relation on S

◮ pre : S → L is a precondition function that assigns a
precondition to each s ∈ S.

◮ < yields a preference relation <a ⊆ S× S for a ∈ A, s ∈ S.

Example: soft update. (Public announcement: hard update.)
First you believe p, after belief revision with ¬p you believe ¬p.

0 1

×

pre(np) pre(p)

= (0, pre(np)) (1, pre(p))



Belief revision – from update to upgrade

Given are a preference epistemic state (M, s) with
M = 〈S ,∼,V , <〉 and a preference action model (M, s) with
M = 〈S,∼, pre, <〉. The result of executing (M, s) in (M, s) is
(M ⊗M, (s, s)) where M ⊗M = 〈S ′,∼′,V ′, <′〉 such that:

◮ S ′ = {(s, s) | s ∈ S , s ∈ S, and M, s |= pre(s)}

◮ (s, s) ∼′
a (t, t) iff (s ∼a t and s ∼a t)

◮ (s, s) ∈ V ′(p) iff s ∈ V (p)

◮ (s, s) <′
a (t, t) iff s <a t or (s =a t and s <a t)

Belief: true in all preferred states
Knowledge: true in all accessible states



Belief revision — example

00 10

01 11

00 10

01 11

�¬p



Dynamic and temporal epistemic logic

Executing an action is like time moving on:
Dynamic epistemic logic and temporal epistemic logic are related.

A player can choose which card to show to another player:
The relation is with branching time temporal logic.
Sequences of actions correspond to histories.
Accessibility satisfies synchronicity, perfect recall, no miracles:

Synchronicity:
Indistinguishable sequences of actions are of equal length;
Perfect recall:
If sequences of n+ 1 actions are indistinguishable,
the sequences of the first n actions are also indistinguishable.
No miracles:
If sequences of actions are ind. and actions are ind. then the
lengthened sequences are ind.



Dynamic and temporal epistemic logic – protocols

You may wish to constrain what actions are possible:
Even if you have the red card, you may not be allowed to show it;
Anne sees that Bill is muddy, but she may not announce it.
She may only announce if she knows whether she is muddy.

The allowed actions are prescribed in a protocol:
a prefix-closed set of sequences of actions.



Dynamic epistemic and temporal epistemic logic – forest

Given an epistemic model, and a protocol, we can grow a forest.

Example: agent 1 knows whether p, agent 2 knows whether q.
The allowed announcements are: q, p, ‘first p then q’.

w01 w11

w01 w11 w11 w11

w00 w10 w102

2 p q

1 1 1

q

2



Dynamic epistemic and temporal epistemic logic – forest

Forest consisting of four trees.
The protocol is {s′′′, s′, s′s′′}. (I.e.: q, p, p; q)

(w01, s′′′) (w11, s′′′)

w01 w11 (w11, s′) (w11, s′, s′′)

w00 w10 (w10, s′)
2 s′

2 s′ s′′

1 1 1

s′′′ s′′′

2

In the most basic approach, expressions like [p][q]C12(p ∧ q) are
translated with labelled temporal operators, i.e., as
Xs′Xs′′C12(p ∧ q). There are also approaches with full-fledged
future and past operators.



History

Factual change:

◮ van Ditmarsch, van der Hoek, Kooi 2005:
Dynamic epistemic logic with assignment

◮ van Benthem, van Eijck, Kooi 2006:
Logics of communication and change

Belief revision:

◮ van Ditmarsch 2005:
Prolegomena to Dynamic Logic for Belief Revision

◮ Baltag & Smets 2006:
Dynamic Belief Revision over Multi-Agent Plausibility Models

Dynamic and temporal epistemic logic:

◮ van Ditmarsch, van der Hoek, Ruan 2007:
Model checking dynamic epistemics in branching time
(FAMAS)

◮ van Benthem, Gerbrandy, Hoshi, Pacuit 2009:
Merging frameworks for interaction



Logic puzzles

Logic puzzles and security protocols

◮ Russian Cards

◮ One hundred prisoners and a lightbulb



Public communication of secrets: Russian Cards

From a pack of seven known cards 0, 1, 2, 3, 4, 5, 6 Alice
(a) and Bob (b) each draw three cards and Eve (c) gets
the remaining card. How can Alice and Bob openly
(publicly) inform each other about their cards, without
Eve learning of any of their cards who holds it?

Suppose Alice draws {0, 1, 2}, Bob draws {3, 4, 5}, and Eve 6.



Public communication of secrets: Russian Cards

From a pack of seven known cards 0, 1, 2, 3, 4, 5, 6 Alice
(a) and Bob (b) each draw three cards and Eve (c) gets
the remaining card. How can Alice and Bob openly
(publicly) inform each other about their cards, without
Eve learning of any of their cards who holds it?

Suppose Alice draws {0, 1, 2}, Bob draws {3, 4, 5}, and Eve 6.

Bad:
Alice says “I have 012, or Bob has 012,” and
Bob then says “I have 345, or Alice has 345.”
Good:
Alice says “I have one of 012, 034, 056, 135, 246,” and
Bob then says “Eve has card 6.”



Card deals

Structures (interpreted system, Kripke model, state transition s.)

Players only know their own cards.
A hand of cards is a local state.
A deal of cards is a global state.

Logic (public announcement logic)

qa agent a holds card q.
ijka (ia ∧ ja ∧ ka) agent a’s hand of cards is {i , j , k}.

Epistemic postconditions

Bob informs Alice aknowsbs
∧
(ijkb → Kaijkb)

Alice informs Bob bknowsas
∧
(ijka → Kb ijka)

Eve remains ignorant cignorant
∧
(¬Kcqa ∧ ¬Kcqb)



Public communication of secrets: bad

An insider says “Alice has {0, 1, 2} or Bob has {0, 1, 2}.”

012.345.6 |= [012a ∨ 012b]cignorant

Alice says “I have {0, 1, 2} or Bob has {0, 1, 2}.”

012.345.6 6|= [Ka(012a ∨ 012b)]cignorant
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· · ·

8 012.345.6 345.012.6
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012.456.3 456.012.3
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b

b
012a ∨ 012b



Public communication of secrets: bad

An insider says “Alice has {0, 1, 2} or Bob has {0, 1, 2}.”

012.345.6 |= [012a ∨ 012b]cignorant

Alice says “I have {0, 1, 2} or Bob has {0, 1, 2}.”

012.345.6 6|= [Ka(012a ∨ 012b)]cignorant

140
· · ·

013.456.2

012.345.6

234.016.5
· · ·

8 012.345.6 345.012.6

012.346.5 346.012.5
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c

c
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a
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b

b
012a ∨ 012b

Ka(012a ∨ 012b)



Public communication of secrets: also bad

Alice says “I don’t have card 6.”

012.345.6 |= [Ka¬6a]cignorant
012.345.6 6|= [Ka¬6a]Kacignorant



Public communication of secrets: almost good

Alice says “I have {0, 1, 2}, or I have none of these cards.”
Eve is ignorant after Alice’s announcement.
Alice knows that Eve is ignorant.
Eve doesn’t know that Alice knows that Eve is ignorant.
But Eve may assume that Alice knows that Eve is ignorant.
That is informative for Eve!

012.345.6 |= [Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a))]cignorant
012.345.6 |= [Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a))]Kacignorant
012.345.6 6|= [Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a))]KcKacignorant
012.345.6 |= [Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a))][Kacignorant]¬cignorant

012.345.6 |= [Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a))][Kacignorant]¬Kacignorant

Alice reveals her cards, because she intends to keep them secret.



Public communication of secrets: almost good
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Public communication of secrets: almost good
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Public communication of secrets

Safe announcements guarantee public preservation of ignorance.

[ϕ] announcement of ϕ (by an observer)
[Kaϕ] announcement of ϕ (by agent/Alice)
[Kaϕ ∧ [Kaϕ]Cabccignorant] safe announcement of ϕ
[Kaϕ][Cabccignorant]

Good protocols produce finite sequences of safe announcements s.t.

Cabc(aknowsbs ∧ bknowsas ∧ cignorant)

Now for some good solutions!



One hundred prisoners and a lightbulb

A group of 100 prisoners, all together in the prison dining
area, are told that they will be all put in isolation cells
and then will be interrogated one by one in a room
containing a light with an on/off switch. The prisoners
may communicate with one another by toggling the
light-switch (and that is the only way in which they can
communicate). The light is initially switched off. There
is no fixed order of interrogation, or interval between
interrogations, and the same prisoner may be
interrogated again at any stage. When interrogated, a
prisoner can either do nothing, or toggle the light-switch,
or announce that all prisoners have been interrogated. If
that announcement is true, the prisoners will (all) be set
free, but if it is false, they will all be executed. While still
in the dining room, and before the prisoners go to their
isolation cells (forever), can the prisoners agree on a
protocol that will set them free?



100 prisoners — solution

Protocol for n > 3 prisoners:

The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time
they enter the room when the light is off, they turn it on; on all
other occasions, they do nothing. The counter follows a different
protocol. The first n− 2 times that the light is on when he enters
the interrogation room, he turns it off. Then the next time he
enters the room when the light is on, he (truthfully) announces
that everybody has been interrogated.



100 prisoners — solution

Protocol for n > 3 prisoners:

The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time
they enter the room when the light is off, they turn it on; on all
other occasions, they do nothing. The counter follows a different
protocol. The first n− 2 times that the light is on when he enters
the interrogation room, he turns it off. Then the next time he
enters the room when the light is on, he (truthfully) announces
that everybody has been interrogated.

What if it is not known whether the light is initially on?



100 prisoners — solution

Protocol for n > 3 prisoners:

The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time
they enter the room when the light is off, they turn it on; on all
other occasions, they do nothing. The counter follows a different
protocol. The first n− 2 times that the light is on when he enters
the interrogation room, he turns it off. Then the next time he
enters the room when the light is on, he (truthfully) announces
that everybody has been interrogated.

What if it is not known whether the light is initially on?
Same count, you may get hanged (namely if light was on).
One higher, you may never terminate (namely if light was off).
???



100 prisoners — solution if light may be on or off

The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time
first two times they enter the room when the light is off, they turn
it on; on all other occasions, they do nothing. The counter follows
a different protocol. The first n − 2 2n − 3 times that the light is
on when he enters the interrogation room, he turns it off. Then
the next time he enters the room when the light is on, he
(truthfully) announces that everybody has been interrogated.



100 prisoners — solution if light may be on or off

The n prisoners appoint one amongst them as the counter. All
non-counting prisoners follow the following protocol: the first time
first two times they enter the room when the light is off, they turn
it on; on all other occasions, they do nothing. The counter follows
a different protocol. The first n − 2 2n − 3 times that the light is
on when he enters the interrogation room, he turns it off. Then
the next time he enters the room when the light is on, he
(truthfully) announces that everybody has been interrogated.

For n = 100, the next entry (198) after 197 switches:

light was off and 99 non-counters have been interrogated twice
light was on and 98 non-counters twice and one once only.

Either way is fine!



100 prisoners — knowing before the counter

After a non-counter has turned the light on, he counts the number
of times he sees the sequence ‘light off – light on’.

If this is 98 times, all have been interrogated.

His announcement will then be before the counter’s.



3 prisoners — a dash of logic

Proposition p stands for for ‘the light is on’.
The counter is agent 0. The non-counters are not modelled.
Proposition q1 stands for ‘prisoner 1 has turned on the light’.
Proposition q2 stands for ‘prisoner 2 has turned on the light’.

event precond. postcondition

e∅ if ⊤ then ǫ ‘nothing happens’
e1 if ⊤ then p := q1 → p and q1 := p → q1
e2 if ⊤ then p := q2 → p and q2 := p → q2
e¬p0 if ¬p then ǫ
ep0 if p then p := ⊥

How the events appear to agent 0:

e¬p0 e2 e∅

ep0 e1

0

0 0



¬p,q1,q2

¬p,q1,¬q2 p,q1,q2 ¬p,¬q1,q2

¬p,q1,¬q2 ¬p,¬q1,q2

p,q1,¬q2 ¬p,¬q1,¬q2 p,¬q1,q2

¬p,¬q1,¬q2

0 0

0

0 0

e1 e∅e¬p0 e2

e1 e2

ep0ep0

e∅e¬p0 e2 e1 e∅e¬p0

e2 e1

ep0



100 prisoners — synchronization

Assume a single interrogation per day takes place.
When can the prisoners expect to be set free from prison?



100 prisoners — synchronization

Assume a single interrogation per day takes place.
When can the prisoners expect to be set free from prison?

non-counter / counter / another non-counter / counter / etc.

99
100 / 1

100 / 98
100 / 1

100 / etc.

100
99 / 100

1 / 100
98 / 100

1 / etc.



100 prisoners — synchronization

Assume a single interrogation per day takes place.
When can the prisoners expect to be set free from prison?

non-counter / counter / another non-counter / counter / etc.

99
100 / 1

100 / 98
100 / 1

100 / etc.

100
99 / 100

1 / 100
98 / 100

1 / etc.

Summation:
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100 prisoners — improvements given synchronization

Dynamic counter assignment (protocol in two stages):

◮ stage 1, 99 days: the first prisoner to enter the room twice
turns on the light. (Expectation: 13 days.)

◮ stage 1, day 100: if light off, done; otherwise, turn light off.

◮ stage 2, from day 101: as before, except that:
counter twice interrogated on day n counts until 100− n only;
non-counters who only saw light off in stage 1: do nothing;
non-counters who saw light on in stage 1: do the usual. (24 y)

Head counter and assistant counters (iterated protocol, 2 stages):

◮ stage 1: head and assistant counters count to agreed max. n;

◮ stage 2: head counter collects from successful assistants;

◮ repeat stage 1 (unsuccessful assistants continue counting to
n) and stage 2 (not yet collected successful assistants, and
newly successful assistants) until termination. (9 years)

Minimum not known!



Quantifying over information change

Modal logics with implicit propositional quantification.
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